12 Search Results for "Thierry-Mieg, Nicolas"


Document
Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model

Authors: Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

Published in: LIPIcs, Volume 166, 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
Reactive programming is a programming paradigm whereby programs are internally represented by a dependency graph, which is used to automatically (re)compute parts of a program whenever its input changes. In practice reactive programming can only be used for some parts of an application: a reactive program is usually embedded in an application that is still written in ordinary imperative languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill "the awkward squad for reactive programming" as 3 concerns that are essential for real-world software development, but that do not fit within reactive programming. They are related to long lasting computations, side-effects, and the coordination between imperative and reactive code. To solve these issues we design a new programming model called the Actor-Reactor Model in which programs are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of imperative and reactive code, and they can be composed via a number of composition operators that make use of data streams. We demonstrate the model via our own implementation in a language called Stella.

Cite as

Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter. Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model. In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 166, pp. 19:1-19:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{vandenvonder_et_al:LIPIcs.ECOOP.2020.19,
  author =	{Van den Vonder, Sam and Renaux, Thierry and Oeyen, Bjarno and De Koster, Joeri and De Meuter, Wolfgang},
  title =	{{Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model}},
  booktitle =	{34th European Conference on Object-Oriented Programming (ECOOP 2020)},
  pages =	{19:1--19:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-154-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{166},
  editor =	{Hirschfeld, Robert and Pape, Tobias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.19},
  URN =		{urn:nbn:de:0030-drops-131768},
  doi =		{10.4230/LIPIcs.ECOOP.2020.19},
  annote =	{Keywords: functional reactive programming, reactive programming, reactive streams, actors, reactors}
}
Document
Ornaments for Proof Reuse in Coq

Authors: Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Ornaments express relations between inductive types with the same inductive structure. We implement fully automatic proof reuse for a particular class of ornaments in a Coq plugin, and show how such a tool can give programmers the rewards of using indexed inductive types while automating away many of the costs. The plugin works directly on Coq code; it is the first ornamentation tool for a non-embedded dependently typed language. It is also the first tool to automatically identify ornaments: To lift a function or proof, the user must provide only the source type, the destination type, and the source function or proof. In taking advantage of the mathematical properties of ornaments, our approach produces faster functions and smaller terms than a more general approach to proof reuse in Coq.

Cite as

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for Proof Reuse in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ringer_et_al:LIPIcs.ITP.2019.26,
  author =	{Ringer, Talia and Yazdani, Nathaniel and Leo, John and Grossman, Dan},
  title =	{{Ornaments for Proof Reuse in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.26},
  URN =		{urn:nbn:de:0030-drops-110816},
  doi =		{10.4230/LIPIcs.ITP.2019.26},
  annote =	{Keywords: ornaments, proof reuse, proof automation}
}
Document
On the Symmetries of and Equivalence Test for Design Polynomials

Authors: Nikhil Gupta and Chandan Saha

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
In a Nisan-Wigderson design polynomial (in short, a design polynomial), every pair of monomials share a few common variables. A useful example of such a polynomial, introduced in [Neeraj Kayal et al., 2014], is the following: NW_{d,k}({x}) = sum_{h in F_d[z], deg(h) <= k}{ prod_{i=0}^{d-1}{x_{i, h(i)}}}, where d is a prime, F_d is the finite field with d elements, and k << d. The degree of the gcd of every pair of monomials in NW_{d,k} is at most k. For concreteness, we fix k = ceil[sqrt{d}]. The family of polynomials NW := {NW_{d,k} : d is a prime} and close variants of it have been used as hard explicit polynomial families in several recent arithmetic circuit lower bound proofs. But, unlike the permanent, very little is known about the various structural and algorithmic/complexity aspects of NW beyond the fact that NW in VNP. Is NW_{d,k} characterized by its symmetries? Is it circuit-testable, i.e., given a circuit C can we check efficiently if C computes NW_{d,k}? What is the complexity of equivalence test for NW, i.e., given black-box access to a f in F[{x}], can we check efficiently if there exists an invertible linear transformation A such that f = NW_{d,k}(A * {x})? Characterization of polynomials by their symmetries plays a central role in the geometric complexity theory program. Here, we answer the first two questions and partially answer the third. We show that NW_{d,k} is characterized by its group of symmetries over C, but not over R. We also show that NW_{d,k} is characterized by circuit identities which implies that NW_{d,k} is circuit-testable in randomized polynomial time. As another application of this characterization, we obtain the "flip theorem" for NW. We give an efficient equivalence test for NW in the case where the transformation A is a block-diagonal permutation-scaling matrix. The design of this algorithm is facilitated by an almost complete understanding of the group of symmetries of NW_{d,k}: We show that if A is in the group of symmetries of NW_{d,k} then A = D * P, where D and P are diagonal and permutation matrices respectively. This is proved by completely characterizing the Lie algebra of NW_{d,k}, and using an interplay between the Hessian of NW_{d,k} and the evaluation dimension.

Cite as

Nikhil Gupta and Chandan Saha. On the Symmetries of and Equivalence Test for Design Polynomials. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 53:1-53:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.MFCS.2019.53,
  author =	{Gupta, Nikhil and Saha, Chandan},
  title =	{{On the Symmetries of and Equivalence Test for Design Polynomials}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{53:1--53:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.53},
  URN =		{urn:nbn:de:0030-drops-109979},
  doi =		{10.4230/LIPIcs.MFCS.2019.53},
  annote =	{Keywords: Nisan-Wigderson design polynomial, characterization by symmetries, Lie algebra, group of symmetries, circuit testability, flip theorem, equivalence test}
}
Document
Invited Paper
Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games (Invited Paper)

Authors: Kim G. Larsen

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
UPPAAL-Stratego is a recent branch of the verification tool UPPAAL allowing for synthesis of safe and optimal strategies for stochastic timed (hybrid) games. We describe newly developed learning methods, allowing for synthesis of significantly better strategies and with much improved convergence behaviour. Also, we describe novel use of decision trees for learning orders-of-magnitude more compact strategy representation. In both cases, the seek for optimality does not compromise safety.

Cite as

Kim G. Larsen. Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games (Invited Paper). In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{larsen:LIPIcs.CONCUR.2019.2,
  author =	{Larsen, Kim G.},
  title =	{{Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{2:1--2:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.2},
  URN =		{urn:nbn:de:0030-drops-109048},
  doi =		{10.4230/LIPIcs.CONCUR.2019.2},
  annote =	{Keywords: Timed automata, Stochastic hybrid grame, Symbolic synthesis, Reinforcement learning, Q-learning, M-learning}
}
Document
Experience Report
Semantic Patches for Java Program Transformation (Experience Report)

Authors: Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and David Lo

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Developing software often requires code changes that are widespread and applied to multiple locations. There are tools for Java that allow developers to specify patterns for program matching and source-to-source transformation. However, to our knowledge, none allows for transforming code based on its control-flow context. We prototype Coccinelle4J, an extension to Coccinelle, which is a program transformation tool designed for widespread changes in C code, in order to work on Java source code. We adapt Coccinelle to be able to apply scripts written in the Semantic Patch Language (SmPL), a language provided by Coccinelle, to Java source files. As a case study, we demonstrate the utility of Coccinelle4J with the task of API migration. We show 6 semantic patches to migrate from deprecated Android API methods on several open source Android projects. We describe how SmPL can be used to express several API migrations and justify several of our design decisions.

Cite as

Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and David Lo. Semantic Patches for Java Program Transformation (Experience Report). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 22:1-22:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kang_et_al:LIPIcs.ECOOP.2019.22,
  author =	{Kang, Hong Jin and Thung, Ferdian and Lawall, Julia and Muller, Gilles and Jiang, Lingxiao and Lo, David},
  title =	{{Semantic Patches for Java Program Transformation}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{22:1--22:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.22},
  URN =		{urn:nbn:de:0030-drops-108140},
  doi =		{10.4230/LIPIcs.ECOOP.2019.22},
  annote =	{Keywords: Program transformation, Java}
}
Document
Gluing for Type Theory

Authors: Ambrus Kaposi, Simon Huber, and Christian Sattler

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
The relationship between categorical gluing and proofs using the logical relation technique is folklore. In this paper we work out this relationship for Martin-Löf type theory and show that parametricity and canonicity arise as special cases of gluing. The input of gluing is two models of type theory and a pseudomorphism between them and the output is a displayed model over the first model. A pseudomorphism preserves the categorical structure strictly, the empty context and context extension up to isomorphism, and there are no conditions on preservation of type formers. We look at three examples of pseudomorphisms: the identity on the syntax, the interpretation into the set model and the global section functor. Gluing along these result in syntactic parametricity, semantic parametricity and canonicity, respectively.

Cite as

Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for Type Theory. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 25:1-25:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2019.25,
  author =	{Kaposi, Ambrus and Huber, Simon and Sattler, Christian},
  title =	{{Gluing for Type Theory}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.25},
  URN =		{urn:nbn:de:0030-drops-105323},
  doi =		{10.4230/LIPIcs.FSCD.2019.25},
  annote =	{Keywords: Martin-L\"{o}f type theory, logical relations, parametricity, canonicity, quotient inductive types}
}
Document
Modeling Power Consumption and Temperature in TLM Models

Authors: Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
Many techniques and tools exist to estimate the power consumption and the temperature map of a chip. These tools help the hardware designers develop power efficient chips in the presence of temperature constraints. For this task, the application can be ignored or at least abstracted by some high level scenarios; at this stage, the actual embedded software is generally not available yet.However, after the hardware is defined, the embedded software can still have a significant influence on the power consumption; i.e., two implementations of the same application can consume more or less power. Moreover, the actual software power manager ensuring the temperature constraints, usually by acting dynamically on the voltage and frequency, must itself be validated. Validating such power management policy requires a model of both actuators and sensors, hence a closed-loop simulation of the functional model with a non-functional one.In this paper, we present and compare several tools to simulate the power and thermal behavior of a chip together with its functionality. We explore several levels of abstraction and study the impact on the precision of the analysis.

Cite as

Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi. Modeling Power Consumption and Temperature in TLM Models. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 03:1-03:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{moy_et_al:LITES-v003-i001-a003,
  author =	{Moy, Matthieu and Helmstetter, Claude and Bouhadiba, Tayeb and Maraninchi, Florence},
  title =	{{Modeling Power Consumption and Temperature in TLM Models}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:29},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a003},
  doi =		{10.4230/LITES-v003-i001-a003},
  annote =	{Keywords: Power consumption, Temperature control, Virtual prototype, SystemC, Transactional modeling}
}
Document
The General Universal Property of the Propositional Truncation

Authors: Nicolai Kraus

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least unit, sigma, pi, and identity types), we define the type of coherently constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega^op. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of coherently constant function is equivalent to the type ||A|| -> B. If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in standard syntactical homotopy type theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a propositional type Q with A -> Q and Q -> B.

Cite as

Nicolai Kraus. The General Universal Property of the Propositional Truncation. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 111-145, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kraus:LIPIcs.TYPES.2014.111,
  author =	{Kraus, Nicolai},
  title =	{{The General Universal Property of the Propositional Truncation}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{111--145},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.111},
  URN =		{urn:nbn:de:0030-drops-54944},
  doi =		{10.4230/LIPIcs.TYPES.2014.111},
  annote =	{Keywords: coherence conditions, propositional truncation, Reedy limits, universal property, well-behaved constancy}
}
Document
Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory

Authors: Benedikt Ahrens and Régis Spadotti

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
We study the notions of relative comonad and comodule over a relative comonad. We use these notions to give categorical semantics for the coinductive type families of streams and of infinite triangular matrices and their respective cosubstitution operations in intensional Martin-Löf type theory. Our results are mechanized in the proof assistant Coq.

Cite as

Benedikt Ahrens and Régis Spadotti. Terminal Semantics for Codata Types in Intensional Martin-Löf Type Theory. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.TYPES.2014.1,
  author =	{Ahrens, Benedikt and Spadotti, R\'{e}gis},
  title =	{{Terminal Semantics for Codata Types in Intensional Martin-L\"{o}f Type Theory}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{1--26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.1},
  URN =		{urn:nbn:de:0030-drops-54891},
  doi =		{10.4230/LIPIcs.TYPES.2014.1},
  annote =	{Keywords: relative comonad, Martin-L\"{o}f type theory, coinductive type, computer theorem proving}
}
Document
Formally Verified Implementation of an Idealized Model of Virtualization

Authors: Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jesús Mauricio Chimento, and Carlos Luna

Published in: LIPIcs, Volume 26, 19th International Conference on Types for Proofs and Programs (TYPES 2013)


Abstract
VirtualCert is a machine-checked model of virtualization that can be used to reason about isolation between operating systems in presence of cache-based side-channels. In contrast to most prominent projects on operating systems verification, where such guarantees are proved directly on concrete implementations of hypervisors, VirtualCert abstracts away most implementations issues and specifies the effects of hypervisor actions axiomatically, in terms of preconditions and postconditions. Unfortunately, seemingly innocuous implementation issues are often relevant for security. Incorporating the treatment of errors into VirtualCert is therefore an important step towards strengthening the isolation theorems proved in earlier work. In this paper, we extend our earlier model with errors, and prove that isolation theorems still apply. In addition, we provide an executable specification of the hypervisor, and prove that it correctly implements the axiomatic model. The executable specification constitutes a first step towards a more realistic implementation of a hypervisor, and provides a useful tool for validating the axiomatic semantics developed in previous work.

Cite as

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Jesús Mauricio Chimento, and Carlos Luna. Formally Verified Implementation of an Idealized Model of Virtualization. In 19th International Conference on Types for Proofs and Programs (TYPES 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 26, pp. 45-63, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{barthe_et_al:LIPIcs.TYPES.2013.45,
  author =	{Barthe, Gilles and Betarte, Gustavo and Campo, Juan Diego and Chimento, Jes\'{u}s Mauricio and Luna, Carlos},
  title =	{{Formally Verified Implementation of an Idealized Model of Virtualization}},
  booktitle =	{19th International Conference on Types for Proofs and Programs (TYPES 2013)},
  pages =	{45--63},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-72-9},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{26},
  editor =	{Matthes, Ralph and Schubert, Aleksy},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2013.45},
  URN =		{urn:nbn:de:0030-drops-46254},
  doi =		{10.4230/LIPIcs.TYPES.2013.45},
  annote =	{Keywords: virtualization, Cache and TLB, Executable specification, Error management, Isolation}
}
Document
Quantum key distribution and cryptography: a survey

Authors: Romain Alléaume, Norbert Lütkenhaus, Renato Renner, Philippe Grangier, Thierry Debuisschert, Gregoire Ribordy, Nicolas Gisin, Philippe Painchault, Thomas Pornin, Louis Slavail, Michel Riguidel, Andrew Shilds, Thomas Länger, Momtchil Peev, Mehrdad Dianati, Anthony Leverrier, Andreas Poppe, Jan Bouda, Cyril Branciard, Mark Godfrey, John Rarity, Harald Weinfurter, Anton Zeilinger, and Christian Monyk

Published in: Dagstuhl Seminar Proceedings, Volume 9311, Classical and Quantum Information Assurance Foundations and Practice (2010)


Abstract
I will try to partially answer, based on a review on recent work, the following question: Can QKD and more generally quantum information be useful to cover some practical security requirements in current (and future) IT infrastructures ? I will in particular cover the following topics - practical performances of QKD - QKD network deployment - SECOQC project - Capabilities of QKD as a cryptographic primitive - comparative advantage with other solution, in order to cover practical security requirements - Quantum information and Side-channels - QKD security assurance - Thoughts about "real" Post-Quantum Cryptography

Cite as

Romain Alléaume, Norbert Lütkenhaus, Renato Renner, Philippe Grangier, Thierry Debuisschert, Gregoire Ribordy, Nicolas Gisin, Philippe Painchault, Thomas Pornin, Louis Slavail, Michel Riguidel, Andrew Shilds, Thomas Länger, Momtchil Peev, Mehrdad Dianati, Anthony Leverrier, Andreas Poppe, Jan Bouda, Cyril Branciard, Mark Godfrey, John Rarity, Harald Weinfurter, Anton Zeilinger, and Christian Monyk. Quantum key distribution and cryptography: a survey. In Classical and Quantum Information Assurance Foundations and Practice. Dagstuhl Seminar Proceedings, Volume 9311, pp. 1-29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{alleaume_et_al:DagSemProc.09311.3,
  author =	{All\'{e}aume, Romain and L\"{u}tkenhaus, Norbert and Renner, Renato and Grangier, Philippe and Debuisschert, Thierry and Ribordy, Gregoire and Gisin, Nicolas and Painchault, Philippe and Pornin, Thomas and Slavail, Louis and Riguidel, Michel and Shilds, Andrew and L\"{a}nger, Thomas and Peev, Momtchil and Dianati, Mehrdad and Leverrier, Anthony and Poppe, Andreas and Bouda, Jan and Branciard, Cyril and Godfrey, Mark and Rarity, John and Weinfurter, Harald and Zeilinger, Anton and Monyk, Christian},
  title =	{{Quantum key distribution and cryptography: a survey}},
  booktitle =	{Classical and Quantum Information Assurance Foundations and Practice},
  pages =	{1--29},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{9311},
  editor =	{Samual L. Braunstein and Hoi-Kwong Lo and Kenny Paterson and Peter Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09311.3},
  URN =		{urn:nbn:de:0030-drops-23618},
  doi =		{10.4230/DagSemProc.09311.3},
  annote =	{Keywords: QKD, QKD networks, Security assurance, Post-Quantum Cryptography}
}
Document
08301 Final Report – Group Testing in the Life Sciences

Authors: Alexander Schliep, Nicolas Thierry-Mieg, and Amin Shokrollahi

Published in: Dagstuhl Seminar Proceedings, Volume 8301, Group Testing in the Life Sciences (2008)


Abstract
Group testing AKA smart-pooling is a general strategy for minimizing the number of tests necessary for identifying positives among a large collection of items. It has the potential to efficiently identify and correct for experimental errors (false–positives and false–negatives). It can be used whenever tests can detect the presence of a positive in a group (or pool) of items, provided that positives are rare. Group testing has numerous applications in the life sciences, such as physical mapping, interactome mapping, drug–resistance screening, or designing DNA-microarrays, and many connections to computer science, mathematics and communications, from error-correcting codes to combinatorial design theory and to statistics. The seminar brought together researchers representing the different communities working on group testing and experimentalists from the life sciences. The desired outcome of the seminar was a better understanding of the requirements for and the possibilities of group testing in the life sciences.

Cite as

Alexander Schliep, Nicolas Thierry-Mieg, and Amin Shokrollahi. 08301 Final Report – Group Testing in the Life Sciences. In Group Testing in the Life Sciences. Dagstuhl Seminar Proceedings, Volume 8301, pp. 1-8, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{schliep_et_al:DagSemProc.08301.1,
  author =	{Schliep, Alexander and Thierry-Mieg, Nicolas and Shokrollahi, Amin},
  title =	{{08301 Final Report – Group Testing in the Life Sciences}},
  booktitle =	{Group Testing in the Life Sciences},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8301},
  editor =	{Alexander Schliep and Amin Shokrollahi and Nicolas Thierry-Mieg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08301.1},
  URN =		{urn:nbn:de:0030-drops-17806},
  doi =		{10.4230/DagSemProc.08301.1},
  annote =	{Keywords: Group Testing, Pooling, Combinatorics, Design Theory, Error correcting}
}
  • Refine by Author
  • 1 Ahrens, Benedikt
  • 1 Alléaume, Romain
  • 1 Barthe, Gilles
  • 1 Betarte, Gustavo
  • 1 Bouda, Jan
  • Show More...

  • Refine by Classification
  • 1 Hardware → Chip-level power issues
  • 1 Software and its engineering → Data flow languages
  • 1 Software and its engineering → Formal software verification
  • 1 Software and its engineering → Multiparadigm languages
  • 1 Software and its engineering → Software notations and tools
  • Show More...

  • Refine by Keyword
  • 2 Martin-Löf type theory
  • 1 Cache and TLB
  • 1 Combinatorics
  • 1 Design Theory
  • 1 Error correcting
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 5 2019
  • 2 2015
  • 1 2008
  • 1 2010
  • 1 2014
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail