2 Search Results for "Ye, Junjie"


Document
Improved Cut Strategy for Tensor Network Contraction Orders

Authors: Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In the field of quantum computing, simulating quantum systems on classical computers is crucial. Tensor networks are fundamental in simulating quantum systems. A tensor network is a collection of tensors, that need to be contracted into a result tensor. Tensor contraction is a generalization of matrix multiplication to higher order tensors. The contractions can be performed in different orders, and the order has a significant impact on the number of floating point operations (flops) needed to get the result tensor. It is known that finding an optimal contraction order is NP-hard. The current state-of-the-art approach for finding efficient contraction orders is to combinine graph partitioning with a greedy strategy. Although heavily used in practice, the current approach ignores so-called free indices, chooses node weights without regarding previous computations, and requires numerous hyperparameters that need to be tuned at runtime. In this paper, we address these shortcomings by developing a novel graph cut strategy. The proposed modifications yield contraction orders that significantly reduce the number of flops in the tensor contractions compared to the current state of the art. Moreover, by removing the need for hyperparameter tuning at runtime, our approach converges to an efficient solution faster, which reduces the required optimization time by at least an order of magnitude.

Cite as

Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen. Improved Cut Strategy for Tensor Network Contraction Orders. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{staudt_et_al:LIPIcs.SEA.2024.27,
  author =	{Staudt, Christoph and Blacher, Mark and Klaus, Julien and Lippmann, Farin and Giesen, Joachim},
  title =	{{Improved Cut Strategy for Tensor Network Contraction Orders}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.27},
  URN =		{urn:nbn:de:0030-drops-203924},
  doi =		{10.4230/LIPIcs.SEA.2024.27},
  annote =	{Keywords: tensor network, contraction order, graph partitioniong, quantum simulation}
}
Document
A Polynomial Kernel for Diamond-Free Editing

Authors: Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
Given a fixed graph H, the H-free editing problem asks whether we can edit at most k edges to make a graph contain no induced copy of H. We obtain a polynomial kernel for this problem when H is a diamond. The incompressibility dichotomy for H being a 3-connected graph and the classical complexity dichotomy suggest that except for H being a complete/empty graph, H-free editing problems admit polynomial kernels only for a few small graphs H. Therefore, we believe that our result is an essential step toward a complete dichotomy on the compressibility of H-free editing. Additionally, we give a cubic-vertex kernel for the diamond-free edge deletion problem, which is far simpler than the previous kernel of the same size for the problem.

Cite as

Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A Polynomial Kernel for Diamond-Free Editing. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ESA.2018.10,
  author =	{Cao, Yixin and Rai, Ashutosh and Sandeep, R. B. and Ye, Junjie},
  title =	{{A Polynomial Kernel for Diamond-Free Editing}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.10},
  URN =		{urn:nbn:de:0030-drops-94732},
  doi =		{10.4230/LIPIcs.ESA.2018.10},
  annote =	{Keywords: Kernelization, Diamond-free, H-free editing, Graph modification problem}
}
  • Refine by Author
  • 1 Blacher, Mark
  • 1 Cao, Yixin
  • 1 Giesen, Joachim
  • 1 Klaus, Julien
  • 1 Lippmann, Farin
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Physics
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Solvers
  • 1 Theory of computation → Algorithm design techniques

  • Refine by Keyword
  • 1 Diamond-free
  • 1 Graph modification problem
  • 1 H-free editing
  • 1 Kernelization
  • 1 contraction order
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2024