Volume

OASIcs, Volume 54

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)



Thumbnail PDF

Event

ATMOS 2016, August 25, 2016, Aarhus, Denmark

Editors

Marc Goerigk
Renato F. Werneck

Publication Details

  • published at: 2016-08-24
  • Publisher: Schloss-Dagstuhl - Leibniz Zentrum für Informatik
  • ISBN: 978-3-95977-021-7
  • DBLP: db/conf/atmos/atmos2016

Access Numbers

Documents

No documents found matching your filter selection.
Document
Complete Volume
OASIcs, Volume 54, ATMOS'16, Complete Volume

Authors: Marc Goerigk and Renato Werneck


Abstract
OASIcs, Volume 54, ATMOS'16, Complete Volume

Cite as

Marc Goerigk and Renato Werneck. OASIcs, Volume 54, ATMOS'16, Complete Volume. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Proceedings{goerigk_et_al:OASIcs.ATMOS.2016,
  title =	{{OASIcs, Volume 54, ATMOS'16, Complete Volume}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016},
  URN =		{urn:nbn:de:0030-drops-66724},
  doi =		{10.4230/OASIcs.ATMOS.2016},
  annote =	{Keywords: Analysis of Algorithms and Problem Complexity, Optimization, Combinatorics, Graph Theory, Applications}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Organization

Authors: Marc Goerigk and Renato F. Werneck


Abstract
Front Matter, Table of Contents, Preface, Organization

Cite as

Marc Goerigk and Renato F. Werneck. Front Matter, Table of Contents, Preface, Organization. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 0:i-0:x, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{goerigk_et_al:OASIcs.ATMOS.2016.0,
  author =	{Goerigk, Marc and Werneck, Renato F.},
  title =	{{Front Matter, Table of Contents, Preface, Organization}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{0:i--0:x},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.0},
  URN =		{urn:nbn:de:0030-drops-65243},
  doi =		{10.4230/OASIcs.ATMOS.2016.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Organization}
}
Document
A Matching Approach for Periodic Timetabling

Authors: Julius Pätzold and Anita Schöbel


Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard, but with important applications mainly for finding good timetables in public transportation. In this paper we consider PESP in public transportation, but in a reduced version (r-PESP) in which the driving and waiting times of the vehicles are fixed to their lower bounds. This results in a still NP-hard problem which has less variables, since only one variable determines the schedule for a whole line. We propose a formulation for r-PESP which is based on scheduling the lines. This enables us on the one hand to identify a finite candidate set and an exact solution approach. On the other hand, we use this formulation to derive a matching-based heuristic for solving PESP. Our experiments on close to real-world instances from LinTim show that our heuristic is able to compute competitive timetables in a very short runtime.

Cite as

Julius Pätzold and Anita Schöbel. A Matching Approach for Periodic Timetabling. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 1:1-1:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{patzold_et_al:OASIcs.ATMOS.2016.1,
  author =	{P\"{a}tzold, Julius and Sch\"{o}bel, Anita},
  title =	{{A Matching Approach for Periodic Timetabling}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{1:1--1:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.1},
  URN =		{urn:nbn:de:0030-drops-65251},
  doi =		{10.4230/OASIcs.ATMOS.2016.1},
  annote =	{Keywords: PESP, Timetabling, Public Transport, Matching, Finite Dominating Set}
}
Document
Sensitivity Analysis and Coupled Decisions in Passenger Flow-Based Train Dispatching

Authors: Martin Lemnian, Matthias Müller-Hannemann, and Ralf Rückert


Abstract
Frequent train delays make passenger-oriented train dispatching a task of high practical relevance. In case of delays, dispatchers have to decide whether trains should wait for one or several delayed feeder trains or should depart on time. To support dispatchers, we have recently introduced the train dispatching framework PANDA (CASPT 2015). In this paper, we present and evaluate two enhancements which are also of general interest. First, we study the sensitivity of waiting decisions with respect to the accuracy of passenger flow data. More specifically, we develop an integer linear programming formulation for the following optimization problem: Given a critical transfer, what is the minimum number of passengers we have to add or to subtract from the given passenger flow such that the decision would change from waiting to non-waiting or vice versa? Based on experiments with realistic passenger flows and delay data from 2015 in Germany, an important empirical finding is that a significant fraction of all decisions is highly sensitive to small changes in passenger flow composition. Hence, very accurate passenger flows are needed in these cases. Second, we investigate the practical value of more sophisticated simulations. A simple strategy evaluates the effect of a waiting decision of some critical transfer on passenger delay subject to the assumption that all subsequent decisions are taken according to standard waiting time rules, as usually employed by railway companies like Deutsche Bahn. Here we analyze the impact of a higher level of simulation where waiting decisions for a critical transfer are considered jointly with one or more other decisions for subsequent transfers. We learn that such "coupled decisions" lead to improved solution in about 6.3% of all considered cases.

Cite as

Martin Lemnian, Matthias Müller-Hannemann, and Ralf Rückert. Sensitivity Analysis and Coupled Decisions in Passenger Flow-Based Train Dispatching. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 2:1-2:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{lemnian_et_al:OASIcs.ATMOS.2016.2,
  author =	{Lemnian, Martin and M\"{u}ller-Hannemann, Matthias and R\"{u}ckert, Ralf},
  title =	{{Sensitivity Analysis and Coupled Decisions in Passenger Flow-Based Train Dispatching}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{2:1--2:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.2},
  URN =		{urn:nbn:de:0030-drops-65264},
  doi =		{10.4230/OASIcs.ATMOS.2016.2},
  annote =	{Keywords: train delays, event-activity model, multi-criteria decisions, passenger flows, sensitivity analysis}
}
Document
Integrating Passengers' Routes in Periodic Timetabling: A SAT approach

Authors: Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel


Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard. Its main application is for designing periodic timetables in public transportation. To this end, the passengers' paths are required as input data. This is a drawback since the final paths which are used by the passengers depend on the timetable to be designed. Including the passengers' routing in the PESP hence improves the quality of the resulting timetables. However, this makes PESP even harder. Formulating the PESP as satisfiability problem and using SAT solvers for its solution has been shown to be a highly promising approach. The goal of this paper is to exploit if SAT solvers can also be used for the problem of integrated timetabling and passenger routing. In our model of the integrated problem we distribute origin-destination (OD) pairs temporally through the network by using time-slices in order to make the resulting model more realistic. We present a formulation of this integrated problem as integer program which we are able to transform to a satisfiability problem. We tested the latter formulation within numerical experiments, which are performed on Germany's long-distance passenger railway network. The computation's analysis in which we compare the integrated approach with the traditional one with fixed passengers' weights, show promising results for future scientific investigations.

Cite as

Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel. Integrating Passengers' Routes in Periodic Timetabling: A SAT approach. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 3:1-3:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gattermann_et_al:OASIcs.ATMOS.2016.3,
  author =	{Gattermann, Philine and Gro{\ss}mann, Peter and Nachtigall, Karl and Sch\"{o}bel, Anita},
  title =	{{Integrating Passengers' Routes in Periodic Timetabling: A SAT approach}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{3:1--3:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.3},
  URN =		{urn:nbn:de:0030-drops-65279},
  doi =		{10.4230/OASIcs.ATMOS.2016.3},
  annote =	{Keywords: PESP, Timetabling, Public Transport, Passengers' Routes, SAT}
}
Document
Pricing Toll Roads under Uncertainty

Authors: Trivikram Dokka, Alain Zemkoho, Sonali Sen Gupta, and Fabrice Talla Nobibon


Abstract
We study the toll pricing problem when the non-toll costs on the network are not fixed and can vary over time. We assume that users who take their decisions, after the tolls are fixed, have full information of all costs before making their decision. Toll-setter, on the other hand, do not have any information of the future costs on the network. The only information toll-setter have is historical information (sample) of the network costs. In this work we study this problem on parallel networks and networks with few number of paths in single origin-destination setting. We formulate toll-setting problem in this setting as a distributionally robust optimization problem and propose a method to solve to it. We illustrate the usefulness of our approach by doing numerical experiments using a parallel network.

Cite as

Trivikram Dokka, Alain Zemkoho, Sonali Sen Gupta, and Fabrice Talla Nobibon. Pricing Toll Roads under Uncertainty. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 4:1-4:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dokka_et_al:OASIcs.ATMOS.2016.4,
  author =	{Dokka, Trivikram and Zemkoho, Alain and Gupta, Sonali Sen and Nobibon, Fabrice Talla},
  title =	{{Pricing Toll Roads under Uncertainty}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{4:1--4:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.4},
  URN =		{urn:nbn:de:0030-drops-65289},
  doi =		{10.4230/OASIcs.ATMOS.2016.4},
  annote =	{Keywords: Conditional value at risk, robust optimization, toll pricing}
}
Document
Scheduling Autonomous Vehicle Platoons Through an Unregulated Intersection

Authors: Juan José Besa Vial, William E. Devanny, David Eppstein, and Michael T. Goodrich


Abstract
We study various versions of the problem of scheduling platoons of autonomous vehicles through an unregulated intersection, where an algorithm must schedule which platoons should wait so that others can go through, so as to minimize the maximum delay for any vehicle. We provide polynomial-time algorithms for constructing such schedules for a k-way merge intersection, for constant k, and for a crossing intersection involving two-way traffic. We also show that the more general problem of scheduling autonomous platoons through an intersection that includes both a k-way merge, for non-constant k, and a crossing of two-way traffic is NP-complete.

Cite as

Juan José Besa Vial, William E. Devanny, David Eppstein, and Michael T. Goodrich. Scheduling Autonomous Vehicle Platoons Through an Unregulated Intersection. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 5:1-5:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{besavial_et_al:OASIcs.ATMOS.2016.5,
  author =	{Besa Vial, Juan Jos\'{e} and Devanny, William E. and Eppstein, David and Goodrich, Michael T.},
  title =	{{Scheduling Autonomous Vehicle Platoons Through an Unregulated Intersection}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{5:1--5:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.5},
  URN =		{urn:nbn:de:0030-drops-65296},
  doi =		{10.4230/OASIcs.ATMOS.2016.5},
  annote =	{Keywords: autonomous vehicles, platoons, scheduling}
}
Document
Multi-Column Generation Model for the Locomotive Assignment Problem

Authors: Brigitte Jaumard and Huaining Tian


Abstract
We propose a new decomposition model and a multi-column generation algorithm for solving the Locomotive Assignment Problem (LAP). The decomposition scheme relies on consist configurations, where each configuration is made of a set of trains pulled by the same set of locomotives. We use the concept of conflict graphs in order to reduce the number of trains to be considered in each consist configuration generator problem: this contributes to significantly reduce the fraction of the computational times spent in generating new potential consists. In addition, we define a column generation problem for each set of variables, leading to a multi-column generation process, with different types of columns. Numerical results, with different numbers of locomotives, are presented on adapted data sets coming from Canada Pacific Railway (CPR). They show that the newly proposed algorithm is able to solve exactly realistic data instances for a timeline spanning up to 6 weeks, in very reasonable computational times.

Cite as

Brigitte Jaumard and Huaining Tian. Multi-Column Generation Model for the Locomotive Assignment Problem. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 6:1-6:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{jaumard_et_al:OASIcs.ATMOS.2016.6,
  author =	{Jaumard, Brigitte and Tian, Huaining},
  title =	{{Multi-Column Generation Model for the Locomotive Assignment Problem}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{6:1--6:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.6},
  URN =		{urn:nbn:de:0030-drops-65302},
  doi =		{10.4230/OASIcs.ATMOS.2016.6},
  annote =	{Keywords: Railway optimization, Locomotive assignment, Column Generation}
}
Document
The Maximum Flow Problem for Oriented Flows

Authors: Stanley Schade and Martin Strehler


Abstract
In several applications of network flows, additional constraints have to be considered. In this paper, we study flows, where the flow particles have an orientation. For example, cargo containers with doors only on one side and train coaches with 1st and 2nd class compartments have such an orientation. If the end position has a mandatory orientation, not every path from source to sink is feasible for routing or additional transposition maneuvers have to be made. As a result, a source-sink path may visit a certain vertex several times. We describe structural properties of optimal solutions, determine the computational complexity, and present an approach for approximating such flows.

Cite as

Stanley Schade and Martin Strehler. The Maximum Flow Problem for Oriented Flows. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 7:1-7:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{schade_et_al:OASIcs.ATMOS.2016.7,
  author =	{Schade, Stanley and Strehler, Martin},
  title =	{{The Maximum Flow Problem for Oriented Flows}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{7:1--7:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.7},
  URN =		{urn:nbn:de:0030-drops-65318},
  doi =		{10.4230/OASIcs.ATMOS.2016.7},
  annote =	{Keywords: network flow with orientation, graph expansion, approximation, container logistics, train routing}
}
Document
Optimizing Traffic Signal Timings for Mega Events

Authors: Robert Scheffler and Martin Strehler


Abstract
Most approaches for optimizing traffic signal timings deal with the daily traffic. However, there are a few occasional events like football matches or concerts of musicians that lead to exceptional traffic situations. Still, such events occur more or less regularly and place and time are known in advance. Hence, it is possible to anticipate such events with special signal timings. In this paper, we present an extension of a cyclically time-expanded network flow model and a corresponding mixed-integer linear programming formulation for simultaneously optimizing traffic signal timings and traffic assignment for such events. Besides the mathematical analysis of this approach, we demonstrate its capabilities by computing signal timings for a real world scenario.

Cite as

Robert Scheffler and Martin Strehler. Optimizing Traffic Signal Timings for Mega Events. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 8:1-8:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{scheffler_et_al:OASIcs.ATMOS.2016.8,
  author =	{Scheffler, Robert and Strehler, Martin},
  title =	{{Optimizing Traffic Signal Timings for Mega Events}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{8:1--8:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.8},
  URN =		{urn:nbn:de:0030-drops-65323},
  doi =		{10.4230/OASIcs.ATMOS.2016.8},
  annote =	{Keywords: traffic flow, traffic signal timings, cyclically time-expanded network, mega event, exceptional traffic}
}
Document
Automatic Design of Aircraft Arrival Routes with Limited Turning Angle

Authors: Tobias Andersson Granberg, Tatiana Polishchuk, Valentin Polishchuk, and Christiane Schmidt


Abstract
We present an application of Integer Programming to the design of arrival routes for aircraft in a Terminal Maneuvering Area (TMA). We generate operationally feasible merge trees of curvature-constrained routes, using two optimization criteria: (1) total length of the tree, and (2) distance flown along the tree paths. The output routes guarantee that the overall traffic pattern in the TMA can be monitored by air traffic controllers; in particular, we keep merge points for arriving aircraft well separated, and we exclude conflicts between arriving and departing aircraft. We demonstrate the feasibility of our method by experimenting with arrival routes for a runway at Arlanda airport in the Stockholm TMA. Our approach can easily be extended in several ways, e.g., to ensure that the routes avoid no-fly zones.

Cite as

Tobias Andersson Granberg, Tatiana Polishchuk, Valentin Polishchuk, and Christiane Schmidt. Automatic Design of Aircraft Arrival Routes with Limited Turning Angle. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 9:1-9:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{granberg_et_al:OASIcs.ATMOS.2016.9,
  author =	{Granberg, Tobias Andersson and Polishchuk, Tatiana and Polishchuk, Valentin and Schmidt, Christiane},
  title =	{{Automatic Design of Aircraft Arrival Routes with Limited Turning Angle}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{9:1--9:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.9},
  URN =		{urn:nbn:de:0030-drops-65336},
  doi =		{10.4230/OASIcs.ATMOS.2016.9},
  annote =	{Keywords: Air Traffic Management, Standard Terminal Arrival Routes, Standard Instrument Departures, Integer programming, Turn constraints}
}
Document
Trip-Based Public Transit Routing Using Condensed Search Trees

Authors: Sascha Witt


Abstract
We study the problem of planning Pareto-optimal journeys in public transit networks. Most existing algorithms and speed-up techniques work by computing subjourneys to intermediary stops until the destination is reached. In contrast, the trip-based model focuses on trips and transfers between them, constructing journeys as a sequence of trips. In this paper, we develop a speed-up technique for this model inspired by principles behind existing state-of-the-art speed-up techniques, Transfer Patterns and Hub Labelling. The resulting algorithm allows us to compute Pareto-optimal (with respect to arrival time and number of transfers) 24-hour profiles on very large real-world networks in less than half a millisecond. Compared to the current state of the art for bicriteria queries on public transit networks, this is up to two orders of magnitude faster, while increasing preprocessing overhead by at most one order of magnitude.

Cite as

Sascha Witt. Trip-Based Public Transit Routing Using Condensed Search Trees. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 10:1-10:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{witt:OASIcs.ATMOS.2016.10,
  author =	{Witt, Sascha},
  title =	{{Trip-Based Public Transit Routing Using Condensed Search Trees}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{10:1--10:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.10},
  URN =		{urn:nbn:de:0030-drops-65341},
  doi =		{10.4230/OASIcs.ATMOS.2016.10},
  annote =	{Keywords: Public Transit, Routing, Public Transport, Route Planning}
}
Document
Time-Dependent Bi-Objective Itinerary Planning Algorithm: Application in Sea Transportation

Authors: Aphrodite Veneti, Charalampos Konstantopoulos, and Grammati Pantziou


Abstract
A special case of the Time-Dependent Shortest Path Problem (TDSPP) is the itinerary planning problem where the objective is to find the shortest path between a source and a destination node which passes through a fixed sequence of intermediate nodes. In this paper, we deviate from the common approach for solving this problem, that is, finding first the shortest paths between successive nodes in the above sequence and then synthesizing the final solution from the solutions of these sub-problems. We propose a more direct approach and solve the problem by a label-setting approach which is able to early prune a lot of partial paths that cannot be part of the optimal solution. In addition, we study a different version of the main problem where it is only required that the solution path should pass through a set of specific nodes irrespectively of the particular order in which these nodes are included in the path. As a case study, we have applied the proposed techniques for solving the itinerary planning of a ship with respect to two conflicting criteria, in the area of the Aegean Sea, Greece. Moreover, the algorithm handles the case that the ship speed is not constant throughout the whole voyage. Specifically, it can be set at a different level each time the ship departs from an intermediate port in order to obtain low cost solutions for the itinerary planning. The experimental results confirm the high performance of the proposed algorithms.

Cite as

Aphrodite Veneti, Charalampos Konstantopoulos, and Grammati Pantziou. Time-Dependent Bi-Objective Itinerary Planning Algorithm: Application in Sea Transportation. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 11:1-11:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{veneti_et_al:OASIcs.ATMOS.2016.11,
  author =	{Veneti, Aphrodite and Konstantopoulos, Charalampos and Pantziou, Grammati},
  title =	{{Time-Dependent Bi-Objective Itinerary Planning Algorithm: Application in Sea Transportation}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{11:1--11:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.11},
  URN =		{urn:nbn:de:0030-drops-65358},
  doi =		{10.4230/OASIcs.ATMOS.2016.11},
  annote =	{Keywords: Multi-criteria optimization, Label setting algorithm, Time dependent networks, Travel planning, Itinerary planning, Sea transportation}
}
Document
Solving Time Dependent Shortest Path Problems on Airway Networks Using Super-Optimal Wind

Authors: Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas Schlechte, and Swen Schlobach


Abstract
We study the Flight Planning Problem for a single aircraft, which deals with finding a path of minimal travel time in an airway network. Flight time along arcs is affected by wind speed and direction, which are functions of time. We consider three variants of the problem, which can be modeled as, respectively, a classical shortest path problem in a metric space, a time-dependent shortest path problem with piecewise linear travel time functions, and a time-dependent shortest path problem with piecewise differentiable travel time functions. The shortest path problem and its time-dependent variant have been extensively studied, in particular, for road networks. Airway networks, however, have different characteristics: the average node degree is higher and shortest paths usually have only few arcs. We propose A* algorithms for each of the problem variants. In particular, for the third problem, we introduce an application-specific "super-optimal wind" potential function that overestimates optimal wind conditions on each arc, and establish a linear error bound. We compare the performance of our methods with the standard Dijkstra algorithm and the Contraction Hierarchies (CHs) algorithm. Our computational results on real world instances show that CHs do not perform as well as on road networks. On the other hand, A* guided by our potentials yields very good results. In particular, for the case of piecewise linear travel time functions, we achieve query times about 15 times shorter than CHs.

Cite as

Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas Schlechte, and Swen Schlobach. Solving Time Dependent Shortest Path Problems on Airway Networks Using Super-Optimal Wind. In 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016). Open Access Series in Informatics (OASIcs), Volume 54, pp. 12:1-12:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{blanco_et_al:OASIcs.ATMOS.2016.12,
  author =	{Blanco, Marco and Bornd\"{o}rfer, Ralf and Hoang, Nam-Dung and Kaier, Anton and Schienle, Adam and Schlechte, Thomas and Schlobach, Swen},
  title =	{{Solving Time Dependent Shortest Path Problems on Airway Networks Using Super-Optimal Wind}},
  booktitle =	{16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)},
  pages =	{12:1--12:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-021-7},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{54},
  editor =	{Goerigk, Marc and Werneck, Renato F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2016.12},
  URN =		{urn:nbn:de:0030-drops-65360},
  doi =		{10.4230/OASIcs.ATMOS.2016.12},
  annote =	{Keywords: shortest path problem, A*, flight trajectory optimization, preprocessing, contraction hierarchies, time-dependent shortest path problem}
}

Filters


Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail