10 Search Results for "Bhaskara, Aditya"


Document
Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering

Authors: Sina Bagheri Nezhad, Sayan Bandyapadhyay, and Tianzhi Chen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In a seminal work, Chierichetti et al. [Chierichetti et al., 2017] introduced the (t,k)-fair clustering problem: Given a set of red points and a set of blue points in a metric space, a clustering is called fair if the number of red points in each cluster is at most t times and at least 1/t times the number of blue points in that cluster. The goal is to compute a fair clustering with at most k clusters that optimizes certain objective function. Considering this problem, they designed a polynomial-time O(1)- and O(t)-approximation for the k-center and the k-median objective, respectively. Recently, Carta et al. [Carta et al., 2024] studied this problem with the sum-of-radii objective and obtained a (6+ε)-approximation with running time O((k log_{1+ε}(k/ε))^k n^O(1)), i.e., fixed-parameter tractable in k. Here n is the input size. In this work, we design the first polynomial-time O(1)-approximation for (t,k)-fair clustering with the sum-of-radii objective, improving the result of Carta et al. Our result places sum-of-radii in the same group of objectives as k-center, that admit polynomial-time O(1)-approximations. This result also implies a polynomial-time O(1)-approximation for the Euclidean version of the problem, for which an f(k)⋅n^O(1)-time (1+ε)-approximation was known due to Drexler et al. [Drexler et al., 2023]. Here f is an exponential function of k. We are also able to extend our result to any arbitrary 𝓁 ≥ 2 number of colors when t = 1. This matches known results for the k-center and k-median objectives in this case. The significant disparity of sum-of-radii compared to k-center and k-median presents several complex challenges, all of which we successfully overcome in our work. Our main contribution is a novel cluster-merging-based analysis technique for sum-of-radii that helps us achieve the constant-approximation bounds.

Cite as

Sina Bagheri Nezhad, Sayan Bandyapadhyay, and Tianzhi Chen. Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 62:1-62:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bagherinezhad_et_al:LIPIcs.ESA.2025.62,
  author =	{Bagheri Nezhad, Sina and Bandyapadhyay, Sayan and Chen, Tianzhi},
  title =	{{Polynomial-Time Constant-Approximation for Fair Sum-Of-Radii Clustering}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{62:1--62:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.62},
  URN =		{urn:nbn:de:0030-drops-245309},
  doi =		{10.4230/LIPIcs.ESA.2025.62},
  annote =	{Keywords: fair clustering, sum-of-radii clustering, approximation algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Guessing Efficiently for Constrained Subspace Approximation

Authors: Aditya Bhaskara, Sepideh Mahabadi, Madhusudhan Reddy Pittu, Ali Vakilian, and David P. Woodruff

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this paper we study constrained subspace approximation problem. Given a set of n points {a₁,…,a_n} in ℝ^d, the goal of the subspace approximation problem is to find a k dimensional subspace that best approximates the input points. More precisely, for a given p ≥ 1, we aim to minimize the pth power of the 𝓁_p norm of the error vector (‖a₁-Pa₁‖,…,‖a_n-Pa_n‖), where P denotes the projection matrix onto the subspace and the norms are Euclidean. In constrained subspace approximation (CSA), we additionally have constraints on the projection matrix P. In its most general form, we require P to belong to a given subset 𝒮 that is described explicitly or implicitly. We introduce a general framework for constrained subspace approximation. Our approach, that we term coreset-guess-solve, yields either (1+ε)-multiplicative or ε-additive approximations for a variety of constraints. We show that it provides new algorithms for partition-constrained subspace approximation with applications to fair subspace approximation, k-means clustering, and projected non-negative matrix factorization, among others. Specifically, while we reconstruct the best known bounds for k-means clustering in Euclidean spaces, we improve the known results for the remainder of the problems.

Cite as

Aditya Bhaskara, Sepideh Mahabadi, Madhusudhan Reddy Pittu, Ali Vakilian, and David P. Woodruff. Guessing Efficiently for Constrained Subspace Approximation. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.ICALP.2025.29,
  author =	{Bhaskara, Aditya and Mahabadi, Sepideh and Pittu, Madhusudhan Reddy and Vakilian, Ali and Woodruff, David P.},
  title =	{{Guessing Efficiently for Constrained Subspace Approximation}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.29},
  URN =		{urn:nbn:de:0030-drops-234068},
  doi =		{10.4230/LIPIcs.ICALP.2025.29},
  annote =	{Keywords: parameterized complexity, low rank approximation, fairness, non-negative matrix factorization, clustering}
}
Document
Track A: Algorithms, Complexity and Games
Fully Scalable MPC Algorithms for Euclidean k-Center

Authors: Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The k-center problem is a fundamental optimization problem with numerous applications in machine learning, data analysis, data mining, and communication networks. The k-center problem has been extensively studied in the classical sequential setting for several decades, and more recently there have been some efforts in understanding the problem in parallel computing, on the Massively Parallel Computation (MPC) model. For now, we have a good understanding of k-center in the case where each local MPC machine has sufficient local memory to store some representatives from each cluster, that is, when one has Ω(k) local memory per machine. While this setting covers the case of small values of k, for a large number of clusters these algorithms require undesirably large local memory, making them poorly scalable. The case of large k has been considered only recently for the fully scalable low-local-memory MPC model for the Euclidean instances of the k-center problem. However, the earlier works have been considering only the constant dimensional Euclidean space, required a super-constant number of rounds, and produced only k(1+o(1)) centers whose cost is a super-constant approximation of k-center. In this work, we significantly improve upon the earlier results for the k-center problem for the fully scalable low-local-memory MPC model. In the low dimensional Euclidean case in ℝ^d, we present the first constant-round fully scalable MPC algorithm for (2+ε)-approximation. We push the ratio further to (1 + ε)-approximation albeit using slightly more (1 + ε)k centers. All these results naturally extends to slightly super-constant values of d. In the high-dimensional regime, we provide the first fully scalable MPC algorithm that in a constant number of rounds achieves an O(log n/ log log n)-approximation for k-center.

Cite as

Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang. Fully Scalable MPC Algorithms for Euclidean k-Center. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 64:1-64:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2025.64,
  author =	{Czumaj, Artur and Gao, Guichen and Ghaffari, Mohsen and Jiang, Shaofeng H.-C.},
  title =	{{Fully Scalable MPC Algorithms for Euclidean k-Center}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{64:1--64:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.64},
  URN =		{urn:nbn:de:0030-drops-234416},
  doi =		{10.4230/LIPIcs.ICALP.2025.64},
  annote =	{Keywords: Massively Parallel Computing, Euclidean Spaces, k-Center Clustering}
}
Document
Track A: Algorithms, Complexity and Games
Incremental Approximate Single-Source Shortest Paths with Predictions

Authors: Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Helia Niaparast, and Shikha Singh

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The algorithms-with-predictions framework has been used extensively to develop online algorithms with improved beyond-worst-case competitive ratios. Recently, there is growing interest in leveraging predictions for designing data structures with improved beyond-worst-case running times. In this paper, we study the fundamental data structure problem of maintaining approximate shortest paths in incremental graphs in the algorithms-with-predictions model. Given a sequence σ of edges that are inserted one at a time, the goal is to maintain approximate shortest paths from the source to each vertex in the graph at each time step. Before any edges arrive, the data structure is given a prediction of the online edge sequence σ̂ which is used to "warm start" its state. As our main result, we design a learned algorithm that maintains (1+ε)-approximate single-source shortest paths, which runs in Õ(m η log W/ε) time, where W is the weight of the heaviest edge and η is the prediction error. We show these techniques immediately extend to the all-pairs shortest-path setting as well. Our algorithms are consistent (performing nearly as fast as the offline algorithm) when predictions are nearly perfect, have a smooth degradation in performance with respect to the prediction error and, in the worst case, match the best offline algorithm up to logarithmic factors. That is, the algorithms are "ideal" in the algorithms-with-predictions model. As a building block, we study the offline incremental approximate single-source shortest-path (SSSP) problem. In the offline incremental SSSP problem, the edge sequence σ is known a priori and the goal is to construct a data structure that can efficiently return the length of the shortest paths in the intermediate graph G_t consisting of the first t edges, for all t. Note that the offline incremental problem is defined in the worst-case setting (without predictions) and is of independent interest.

Cite as

Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Helia Niaparast, and Shikha Singh. Incremental Approximate Single-Source Shortest Paths with Predictions. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mccauley_et_al:LIPIcs.ICALP.2025.117,
  author =	{McCauley, Samuel and Moseley, Benjamin and Niaparast, Aidin and Niaparast, Helia and Singh, Shikha},
  title =	{{Incremental Approximate Single-Source Shortest Paths with Predictions}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.117},
  URN =		{urn:nbn:de:0030-drops-234946},
  doi =		{10.4230/LIPIcs.ICALP.2025.117},
  annote =	{Keywords: Algorithms with Predictions, Shortest Paths, Approximation Algorithms, Dynamic Graph Algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case

Authors: Shaofeng H.-C. Jiang and Jianing Lou

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We devise ε-coresets for robust (k,z)-Clustering with m outliers through black-box reductions to vanilla clustering. Given an ε-coreset construction for vanilla clustering with size N, we construct coresets of size N⋅ polylog(kmε^{-1}) + O_z(min{kmε^{-1}, m ε^{-2z}log^z(kmε^{-1})}) for various metric spaces, where O_z hides 2^{O(zlog z)} factors. This increases the size of the vanilla coreset by a small multiplicative factor of polylog(kmε^{-1}), and the additive term is up to a (ε^{-1}log (km))^{O(z)} factor to the size of the optimal robust coreset. Plugging in recent vanilla coreset results of [Cohen-Addad, Saulpic and Schwiegelshohn, STOC'21; Cohen-Addad, Draganov, Russo, Saulpic and Schwiegelshohn, SODA'25], we obtain the first coresets for (k,z)-Clustering with m outliers with size near-linear in k while previous results have size at least Ω(k²) [Huang, Jiang, Lou and Wu, ICLR'23; Huang, Li, Lu and Wu, SODA'25]. Technically, we establish two conditions under which a vanilla coreset is as well a robust coreset. The first condition requires the dataset to satisfy special structures - it can be broken into "dense" parts with bounded diameter. We combine this with a new bounded-diameter decomposition that has only O_z(km ε^{-1}) non-dense points to obtain the O_z(km ε^{-1}) additive bound. Another sufficient condition requires the vanilla coreset to possess an extra size-preserving property. To utilize this condition, we further give a black-box reduction that turns a vanilla coreset to the one that satisfies the said size-preserving property, and this leads to the alternative O_z(mε^{-2z}log^{z}(kmε^{-1})) additive size bound. We also give low-space implementations of our reductions in the dynamic streaming setting. Combined with known streaming constructions for vanilla coresets [Braverman, Frahling, Lang, Sohler and Yang, ICML'17; Hu, Song, Yang and Zhong, arXiv'1802.00459], we obtain the first dynamic streaming algorithms for coresets for k-Median (and k-Means) with m outliers, using space Õ(k + m) ⋅ poly(dε^{-1}log Δ) for inputs on a discrete grid [Δ]^d.

Cite as

Shaofeng H.-C. Jiang and Jianing Lou. Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ICALP.2025.101,
  author =	{Jiang, Shaofeng H.-C. and Lou, Jianing},
  title =	{{Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.101},
  URN =		{urn:nbn:de:0030-drops-234781},
  doi =		{10.4230/LIPIcs.ICALP.2025.101},
  annote =	{Keywords: Coresets, clustering, outliers, streaming algorithms}
}
Document
Targeted Least Cardinality Candidate Key for Relational Databases

Authors: Vasileios Nakos, Hung Q. Ngo, and Charalampos E. Tsourakakis

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Functional dependencies (FDs) are a central theme in databases, playing a major role in the design of database schemas and the optimization of queries [Ramakrishnan and Gehrke, 2003]. In this work, we introduce the targeted least cardinality candidate key problem (TCAND). This problem is defined over a set of functional dependencies ℱ and a target variable set T ⊆ V, and it aims to find the smallest set X ⊆ V such that the FD X → T can be derived from ℱ. The TCAND problem generalizes the well-known NP-hard problem of finding the least cardinality candidate key [Lucchesi and Osborn, 1978], which has been previously demonstrated to be at least as difficult as the set cover problem. We present an integer programming (IP) formulation for the TCAND problem, analogous to a layered set cover problem. We analyze its linear programming (LP) relaxation from two perspectives: we propose two approximation algorithms and investigate the integrality gap. Our findings indicate that the approximation upper bounds for our algorithms are not significantly improvable through LP rounding, a notable distinction from the standard Set Cover problem. Additionally, we discover that a generalization of the TCAND problem is equivalent to a variant of the Set Cover problem, named Red Blue Set Cover [Carr et al., 2000], which cannot be approximated within a sub-polynomial factor in polynomial time under plausible conjectures [Chlamtáč et al., 2023]. Despite the extensive history surrounding the issue of identifying the least cardinality candidate key, our research contributes new theoretical insights, novel algorithms, and demonstrates that the general TCAND problem poses complexities beyond those encountered in the Set Cover problem.

Cite as

Vasileios Nakos, Hung Q. Ngo, and Charalampos E. Tsourakakis. Targeted Least Cardinality Candidate Key for Relational Databases. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nakos_et_al:LIPIcs.ICDT.2025.21,
  author =	{Nakos, Vasileios and Ngo, Hung Q. and Tsourakakis, Charalampos E.},
  title =	{{Targeted Least Cardinality Candidate Key for Relational Databases}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.21},
  URN =		{urn:nbn:de:0030-drops-229628},
  doi =		{10.4230/LIPIcs.ICDT.2025.21},
  annote =	{Keywords: functional dependencies, candidate key, approximation algorithms, hardness}
}
Document
Online Learning and Bandits with Queried Hints

Authors: Aditya Bhaskara, Sreenivas Gollapudi, Sungjin Im, Kostas Kollias, and Kamesh Munagala

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number (k) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with k = 2 suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from O(√{nT}) to O(n² log T), where n is the number of arms and T is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, k = 3 probes suffice to achieve parameter-independent constant regret, O(n²). Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited "advice" via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.

Cite as

Aditya Bhaskara, Sreenivas Gollapudi, Sungjin Im, Kostas Kollias, and Kamesh Munagala. Online Learning and Bandits with Queried Hints. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 16:1-16:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.ITCS.2023.16,
  author =	{Bhaskara, Aditya and Gollapudi, Sreenivas and Im, Sungjin and Kollias, Kostas and Munagala, Kamesh},
  title =	{{Online Learning and Bandits with Queried Hints}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.16},
  URN =		{urn:nbn:de:0030-drops-175197},
  doi =		{10.4230/LIPIcs.ITCS.2023.16},
  annote =	{Keywords: Online learning, multi-armed bandits, regret}
}
Document
Low Rank Approximation in the Presence of Outliers

Authors: Aditya Bhaskara and Srivatsan Kumar

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We consider the problem of principal component analysis (PCA) in the presence of outliers. Given a matrix A (d x n) and parameters k, m, the goal is to remove a set of at most m columns of A (outliers), so as to minimize the rank-k approximation error of the remaining matrix (inliers). While much of the work on this problem has focused on recovery of the rank-k subspace under assumptions on the inliers and outliers, we focus on the approximation problem. Our main result shows that sampling-based methods developed in the outlier-free case give non-trivial guarantees even in the presence of outliers. Using this insight, we develop a simple algorithm that has bi-criteria guarantees. Further, unlike similar formulations for clustering, we show that bi-criteria guarantees are unavoidable for the problem, under appropriate complexity assumptions.

Cite as

Aditya Bhaskara and Srivatsan Kumar. Low Rank Approximation in the Presence of Outliers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.APPROX-RANDOM.2018.4,
  author =	{Bhaskara, Aditya and Kumar, Srivatsan},
  title =	{{Low Rank Approximation in the Presence of Outliers}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.4},
  URN =		{urn:nbn:de:0030-drops-94087},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.4},
  annote =	{Keywords: Low rank approximation, PCA, Robustness to outliers}
}
Document
Sublinear Algorithms for MAXCUT and Correlation Clustering

Authors: Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We study sublinear algorithms for two fundamental graph problems, MAXCUT and correlation clustering. Our focus is on constructing core-sets as well as developing streaming algorithms for these problems. Constant space algorithms are known for dense graphs for these problems, while Omega(n) lower bounds exist (in the streaming setting) for sparse graphs. Our goal in this paper is to bridge the gap between these extremes. Our first result is to construct core-sets of size O~(n^{1-delta}) for both the problems, on graphs with average degree n^{delta} (for any delta >0). This turns out to be optimal, under the exponential time hypothesis (ETH). Our core-set analysis is based on studying random-induced sub-problems of optimization problems. To the best of our knowledge, all the known results in our parameter range rely crucially on near-regularity assumptions. We avoid these by using a biased sampling approach, which we analyze using recent results on concentration of quadratic functions. We then show that our construction yields a 2-pass streaming (1+epsilon)-approximation for both problems; the algorithm uses O~(n^{1-delta}) space, for graphs of average degree n^delta.

Cite as

Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear Algorithms for MAXCUT and Correlation Clustering. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.ICALP.2018.16,
  author =	{Bhaskara, Aditya and Daruki, Samira and Venkatasubramanian, Suresh},
  title =	{{Sublinear Algorithms for MAXCUT and Correlation Clustering}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.16},
  URN =		{urn:nbn:de:0030-drops-90203},
  doi =		{10.4230/LIPIcs.ICALP.2018.16},
  annote =	{Keywords: Sublinear algorithms, Streaming algorithms, Core-sets, Maximum cut, Correlation clustering}
}
Document
Non-Negative Sparse Regression and Column Subset Selection with L1 Error

Authors: Aditya Bhaskara and Silvio Lattanzi

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
We consider the problems of sparse regression and column subset selection under L1 error. For both problems, we show that in the non-negative setting it is possible to obtain tight and efficient approximations, without any additional structural assumptions (such as restricted isometry, incoherence, expansion, etc.). For sparse regression, given a matrix A and a vector b with non-negative entries, we give an efficient algorithm to output a vector x of sparsity O(k), for which |Ax - b|_1 is comparable to the smallest error possible using non-negative k-sparse x. We then use this technique to obtain our main result: an efficient algorithm for column subset selection under L1 error for non-negative matrices.

Cite as

Aditya Bhaskara and Silvio Lattanzi. Non-Negative Sparse Regression and Column Subset Selection with L1 Error. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.ITCS.2018.7,
  author =	{Bhaskara, Aditya and Lattanzi, Silvio},
  title =	{{Non-Negative Sparse Regression and Column Subset Selection with L1 Error}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.7},
  URN =		{urn:nbn:de:0030-drops-83548},
  doi =		{10.4230/LIPIcs.ITCS.2018.7},
  annote =	{Keywords: Sparse regression, L1 error optimization, Column subset selection}
}
  • Refine by Type
  • 10 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2023
  • 3 2018

  • Refine by Author
  • 5 Bhaskara, Aditya
  • 2 Jiang, Shaofeng H.-C.
  • 1 Bagheri Nezhad, Sina
  • 1 Bandyapadhyay, Sayan
  • 1 Chen, Tianzhi
  • Show More...

  • Refine by Series/Journal
  • 10 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Facility location and clustering
  • 1 Information systems → Database design and models
  • 1 Theory of computation → Continuous optimization
  • 1 Theory of computation → Massively parallel algorithms
  • Show More...

  • Refine by Keyword
  • 2 approximation algorithms
  • 2 clustering
  • 1 Algorithms with Predictions
  • 1 Approximation Algorithms
  • 1 Column subset selection
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail