5 Search Results for "Comin, Matteo"


Document
Research
Subsequence-Based Indices for Genome Sequence Analysis

Authors: Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and Lorenzo Tattini

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where genomic sequences can reach billions in length. This paper presents some recent results in which Roberto Grossi has been involved, showing how some of these indices do more than just efficiently represent data, but rather are able to bring out salient information within it, which can be exploited for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et al., 2023] that employs the Burrows-Wheeler Transform to build reasonably accurate phylogenetic trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for indexing Maximal Common Subsequences between strings, which can enable analysis of genomic sequence similarity. Experimentally, we show that the results produced by the one index are consistent with the expectations about the results of the other index.

Cite as

Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and Lorenzo Tattini. Subsequence-Based Indices for Genome Sequence Analysis. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buzzega_et_al:OASIcs.Grossi.20,
  author =	{Buzzega, Giovanni and Conte, Alessio and Guerrini, Veronica and Punzi, Giulia and Rosone, Giovanna and Tattini, Lorenzo},
  title =	{{Subsequence-Based Indices for Genome Sequence Analysis}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{20:1--20:21},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.20},
  URN =		{urn:nbn:de:0030-drops-238199},
  doi =		{10.4230/OASIcs.Grossi.20},
  annote =	{Keywords: String Indices, Burrows-Wheeler Transform, Maximal Common Subsequences, Sequence Analysis, Phylogeny}
}
Document
Algorithms for Computing Very Large BWTs: a Short Survey

Authors: Diego Díaz-Domínguez, Lavinia Egidi, Veronica Guerrini, Felipe A. Louza, and Giovanna Rosone

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
The Burrows-Wheeler Transform (BWT) is a fundamental string transformation that, although initially introduced for data compression, has been extensively utilized across various domains, including text indexing and pattern matching within large datasets. Although the BWT construction is linear, the constants make the task impractical for large datasets, and as highlighted by Ferragina et al. [Paolo Ferragina et al., 2012], "to use it, one must first build it!". Thus, the construction of the BWT remains a significant challenge. For these reasons, during the past three decades there has been a succession of new algorithms for its construction using techniques that work in external memory or that use text compression. In this survey, we revise some of the most important advancements and tools presented in the past years for computing large BWTs exploiting external memory or text compression approaches without using additional information about the data.

Cite as

Diego Díaz-Domínguez, Lavinia Egidi, Veronica Guerrini, Felipe A. Louza, and Giovanna Rosone. Algorithms for Computing Very Large BWTs: a Short Survey. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 7:1-7:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{diazdominguez_et_al:OASIcs.Manzini.7,
  author =	{D{\'\i}az-Dom{\'\i}nguez, Diego and Egidi, Lavinia and Guerrini, Veronica and Louza, Felipe A. and Rosone, Giovanna},
  title =	{{Algorithms for Computing Very Large BWTs: a Short Survey}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{7:1--7:28},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.7},
  URN =		{urn:nbn:de:0030-drops-239151},
  doi =		{10.4230/OASIcs.Manzini.7},
  annote =	{Keywords: Burrows-Wheeler transform, Extended Burrows-Wheeler transform, external memory, text compression, longest common prefix}
}
Document
Incorporating Decision Nodes into Conditional Simple Temporal Networks

Authors: Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato, Romeo Rizzi, and Matteo Zavatteri

Published in: LIPIcs, Volume 90, 24th International Symposium on Temporal Representation and Reasoning (TIME 2017)


Abstract
A Conditional Simple Temporal Network (CSTN) augments a Simple Temporal Network (STN) to include special time-points, called observation time-points. In a CSTN, the agent executing the network controls the execution of every time-point. However, each observation time-point has a unique propositional letter associated with it and, when the agent executes that time-point, the environment assigns a truth value to the corresponding letter. Thus, the agent observes but, does not control the assignment of truth values. A CSTN is dynamically consistent (DC) if there exists a strategy for executing its time-points such that all relevant constraints will be satisfied no matter which truth values the environment assigns to the propositional letters. Alternatively, in a Labeled Simple Temporal Network (Labeled STN) - also called a Temporal Plan with Choice - the agent executing the network controls the assignment of values to the so-called choice variables. Furthermore, the agent can make those assignments at any time. For this reason, a Labeled STN is equivalent to a Disjunctive Temporal Network. This paper incorporates both of the above extensions by augmenting a CSTN to include not only observation time-points but also decision time-points. A decision time-point is like an observation time-point in that it has an associated propositional letter whose value is determined when the decision time-point is executed. It differs in that the agent - not the environment - selects that value. The resulting network is called a CSTN with Decisions (CSTND). This paper shows that a CSTND generalizes both CSTNs and Labeled STNs, and proves that the problem of determining whether any given CSTND is dynamically consistent is PSPACE-complete. It also presents algorithms that address two sub-classes of CSTNDs: (1) those that contain only decision time-points; and (2) those in which all decisions are made before execution begins.

Cite as

Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato, Romeo Rizzi, and Matteo Zavatteri. Incorporating Decision Nodes into Conditional Simple Temporal Networks. In 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 90, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cairo_et_al:LIPIcs.TIME.2017.9,
  author =	{Cairo, Massimo and Combi, Carlo and Comin, Carlo and Hunsberger, Luke and Posenato, Roberto and Rizzi, Romeo and Zavatteri, Matteo},
  title =	{{Incorporating Decision Nodes into Conditional Simple Temporal Networks}},
  booktitle =	{24th International Symposium on Temporal Representation and Reasoning (TIME 2017)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-052-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{90},
  editor =	{Schewe, Sven and Schneider, Thomas and Wijsen, Jef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2017.9},
  URN =		{urn:nbn:de:0030-drops-79155},
  doi =		{10.4230/LIPIcs.TIME.2017.9},
  annote =	{Keywords: Conditional Simple Temporal Networks with Decisions, Dynamic Consistency, SAT Solver, Hyper Temporal Networks, PSPACE}
}
Document
Fast Spaced Seed Hashing

Authors: Samuele Girotto, Matteo Comin, and Cinzia Pizzi

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
Hashing k-mers is a common function across many bioinformatics applications and it is widely used for indexing, querying and rapid similarity search. Recently, spaced seeds, a special type of pattern that accounts for errors or mutations, are routinely used instead of k-mers. Spaced seeds allow to improve the sensitivity, with respect to k-mers, in many applications, however the hashing of spaced seeds increases substantially the computational time. Hence, the ability to speed up hashing operations of spaced seeds would have a major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. In this paper we address the problem of efficient spaced seed hashing. The proposed algorithm exploits the similarity of adjacent spaced seed hash values in an input sequence in order to efficiently compute the next hash. We report a series of experiments on NGS reads hashing using several spaced seeds. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6x to 5.3x, depending on the structure of the spaced seed.

Cite as

Samuele Girotto, Matteo Comin, and Cinzia Pizzi. Fast Spaced Seed Hashing. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{girotto_et_al:LIPIcs.WABI.2017.7,
  author =	{Girotto, Samuele and Comin, Matteo and Pizzi, Cinzia},
  title =	{{Fast Spaced Seed Hashing}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.7},
  URN =		{urn:nbn:de:0030-drops-76501},
  doi =		{10.4230/LIPIcs.WABI.2017.7},
  annote =	{Keywords: k-mers, spaced seeds, efficient hashing}
}
Document
Remote Homology Detection of Protein Sequences

Authors: Matteo Comin and Davide Verzotto

Published in: Dagstuhl Seminar Proceedings, Volume 10231, Structure Discovery in Biology: Motifs, Networks & Phylogenies (2010)


Abstract
The classification of protein sequences using string kernels provides valuable insights for protein function prediction. Almost all string kernels are based on patterns that are not independent, and therefore the associated scores are obtained using a set of redundant features. In this talk we will discuss how a class of patterns, called Irredundant, is specifically designed to address this issue. Loosely speaking the set of Irredundant patterns is the smallest class of independent patterns that can describe all patterns in a string. We present a classification method based on the statistics of these patterns, named Irredundant Class. Results on benchmark data show that Irredundant Class outperforms most of the string kernel methods previously proposed, and it achieves results as good as the current state-of-the-art methods with a fewer number of patterns. Unfortunately we show that the information carried by the irredundant patterns can not be easily interpreted, thus alternative notions are needed.

Cite as

Matteo Comin and Davide Verzotto. Remote Homology Detection of Protein Sequences. In Structure Discovery in Biology: Motifs, Networks & Phylogenies. Dagstuhl Seminar Proceedings, Volume 10231, pp. 1-20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{comin_et_al:DagSemProc.10231.7,
  author =	{Comin, Matteo and Verzotto, Davide},
  title =	{{Remote Homology Detection of Protein Sequences}},
  booktitle =	{Structure Discovery in Biology: Motifs, Networks \& Phylogenies},
  pages =	{1--20},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10231},
  editor =	{Alberto Apostolico and Andreas Dress and Laxmi Parida},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10231.7},
  URN =		{urn:nbn:de:0030-drops-27419},
  doi =		{10.4230/DagSemProc.10231.7},
  annote =	{Keywords: Classification of protein sequences, irredundant patterns}
}
  • Refine by Type
  • 5 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 2 2017
  • 1 2010

  • Refine by Author
  • 2 Comin, Matteo
  • 2 Guerrini, Veronica
  • 2 Rosone, Giovanna
  • 1 Buzzega, Giovanni
  • 1 Cairo, Massimo
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs
  • 2 OASIcs
  • 1 DagSemProc

  • Refine by Classification
  • 2 Theory of computation → Data structures design and analysis
  • 1 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 1 Burrows-Wheeler Transform
  • 1 Burrows-Wheeler transform
  • 1 Classification of protein sequences
  • 1 Conditional Simple Temporal Networks with Decisions
  • 1 Dynamic Consistency
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail