4 Search Results for "Dudycz, Szymon"


Document
Improved Approximation Algorithms for Capacitated Vehicle Routing with Fixed Capacity

Authors: Jingyang Zhao and Mingyu Xiao

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
The Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied problems in combinatorial optimization. Based on customer demand, we distinguish three variants of CVRP: unit-demand, splittable, and unsplittable. In this paper, we consider k-CVRP in general metrics and on general graphs, where k is the vehicle capacity. All three versions are APX-hard for any fixed k ≥ 3. Assume that the approximation ratio of metric TSP is 3/2. We present a (5/2 - Θ(√{1/k}))-approximation algorithm for the splittable and unit-demand cases, and a (5/2 + ln 2 - Θ(√{1/k}))-approximation algorithm for the unsplittable case. Our approximation ratio is better than the previous results when k is less than a sufficiently large value, approximately 1.7 x 10⁷. For small values of k, we design independent and elegant algorithms with further improvements. For the splittable and unit-demand cases, we improve the approximation ratio from 1.792 to 1.500 for k = 3, and from 1.750 to 1.500 for k = 4. For the unsplittable case, we improve the approximation ratio from 1.792 to 1.500 for k = 3, from 2.051 to 1.750 for k = 4, and from 2.249 to 2.157 for k = 5. The approximation ratio for k = 3 surprisingly achieves the same value as in the splittable case. Our techniques, such as EX-ITP - an extension of the classic ITP method, have the potential to improve algorithms for other routing problems as well.

Cite as

Jingyang Zhao and Mingyu Xiao. Improved Approximation Algorithms for Capacitated Vehicle Routing with Fixed Capacity. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhao_et_al:LIPIcs.MFCS.2025.93,
  author =	{Zhao, Jingyang and Xiao, Mingyu},
  title =	{{Improved Approximation Algorithms for Capacitated Vehicle Routing with Fixed Capacity}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.93},
  URN =		{urn:nbn:de:0030-drops-242008},
  doi =		{10.4230/LIPIcs.MFCS.2025.93},
  annote =	{Keywords: Combinatorial Optimization, Capacitated Vehicle Routing, Approximation Algorithms, Graph Algorithms}
}
Document
Faster Algorithms on Linear Delta-Matroids

Authors: Tomohiro Koana and Magnus Wahlström

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We present new algorithms and constructions for linear delta-matroids. Delta-matroids are generalizations of matroids that also capture structures such as matchable vertex sets in graphs and path-packing problems. As with matroids, an important class of delta-matroids is given by linear delta-matroids, which generalize linear matroids and are represented via a "twist" of a skew-symmetric matrix. We observe an alternative representation, termed a contraction representation over a skew-symmetric matrix. This representation is equivalent to the more standard twist representation up to O(n^ω)-time transformations (where n is the dimension of the delta-matroid and ω < 2.372 the matrix multiplication exponent), but it is much more convenient for algorithmic tasks. For instance, the problem of finding a max-weight feasible set now reduces directly to finding a max-weight basis in a linear matroid. Supported by this representation, we provide new algorithms and constructions for linear delta-matroids. In particular, we show that the union and delta-sum of linear delta-matroids are again linear delta-matroids, and that a representation for the resulting delta-matroid can be constructed in randomized time O(n^ω) (or more precisely, in O(n^ω) field operations, over a field of size at least Ω(n⋅(1/ε)), where ε > 0 is an error parameter). Previously, it was only known that these operations define delta-matroids. We also note that every projected linear delta-matroid can be represented as an elementary projection. This implies that several optimization problems over (projected) linear delta-matroids, including the coverage, delta-coverage, and parity problems, reduce (in their decision versions) to a single O(n^ω)-time matrix rank computation. Using the methods of Harvey, previously applied by Cheung, Lao and Leung for linear matroid parity, we furthermore show how to solve the search versions in the same time. This improves on the O(n⁴)-time augmenting path algorithm of Geelen, Iwata and Murota, albeit with randomization. Finally, we consider the maximum-cardinality delta-matroid intersection problem (equivalently, the maximum-cardinality delta-matroid matching problem). Using Storjohann’s algorithms for symbolic determinants, we show that such a solution can be found in O(n^{ω+1}) time. This provides the first (randomized) polynomial-time solution for the problem, thereby solving an open question of Kakimura and Takamatsu.

Cite as

Tomohiro Koana and Magnus Wahlström. Faster Algorithms on Linear Delta-Matroids. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{koana_et_al:LIPIcs.STACS.2025.62,
  author =	{Koana, Tomohiro and Wahlstr\"{o}m, Magnus},
  title =	{{Faster Algorithms on Linear Delta-Matroids}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.62},
  URN =		{urn:nbn:de:0030-drops-228876},
  doi =		{10.4230/LIPIcs.STACS.2025.62},
  annote =	{Keywords: Delta-matroids, Randomized algorithms}
}
Document
Tight Approximation Guarantees for Concave Coverage Problems

Authors: Siddharth Barman, Omar Fawzi, and Paul Fermé

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
In the maximum coverage problem, we are given subsets T_1, …, T_m of a universe [n] along with an integer k and the objective is to find a subset S ⊆ [m] of size k that maximizes C(S) : = |⋃_{i ∈ S} T_i|. It is a classic result that the greedy algorithm for this problem achieves an optimal approximation ratio of 1-e^{-1}. In this work we consider a generalization of this problem wherein an element a can contribute by an amount that depends on the number of times it is covered. Given a concave, nondecreasing function φ, we define C^{φ}(S) := ∑_{a ∈ [n]}w_aφ(|S|_a), where |S|_a = |{i ∈ S : a ∈ T_i}|. The standard maximum coverage problem corresponds to taking φ(j) = min{j,1}. For any such φ, we provide an efficient algorithm that achieves an approximation ratio equal to the Poisson concavity ratio of φ, defined by α_{φ} : = min_{x ∈ ℕ^*} 𝔼[φ(Poi(x))] / φ(𝔼[Poi(x)]). Complementing this approximation guarantee, we establish a matching NP-hardness result when φ grows in a sublinear way. As special cases, we improve the result of [Siddharth Barman et al., 2020] about maximum multi-coverage, that was based on the unique games conjecture, and we recover the result of [Szymon Dudycz et al., 2020] on multi-winner approval-based voting for geometrically dominant rules. Our result goes beyond these special cases and we illustrate it with applications to distributed resource allocation problems, welfare maximization problems and approval-based voting for general rules.

Cite as

Siddharth Barman, Omar Fawzi, and Paul Fermé. Tight Approximation Guarantees for Concave Coverage Problems. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{barman_et_al:LIPIcs.STACS.2021.9,
  author =	{Barman, Siddharth and Fawzi, Omar and Ferm\'{e}, Paul},
  title =	{{Tight Approximation Guarantees for Concave Coverage Problems}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.9},
  URN =		{urn:nbn:de:0030-drops-136543},
  doi =		{10.4230/LIPIcs.STACS.2021.9},
  annote =	{Keywords: Approximation Algorithms, Coverage Problems, Concave Function}
}
Document
Congestion-Free Rerouting of Flows on DAGs

Authors: Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
Changing a given configuration in a graph into another one is known as a reconfiguration problem. Such problems have recently received much interest in the context of algorithmic graph theory. We initiate the theoretical study of the following reconfiguration problem: How to reroute k unsplittable flows of a certain demand in a capacitated network from their current paths to their respective new paths, in a congestion-free manner? This problem finds immediate applications, e.g., in traffic engineering in computer networks. We show that the problem is generally NP-hard already for k=2 flows, which motivates us to study rerouting on a most basic class of flow graphs, namely DAGs. Interestingly, we find that for general k, deciding whether an unsplittable multi-commodity flow rerouting schedule exists, is NP-hard even on DAGs. Our main contribution is a polynomial-time (fixed parameter tractable) algorithm to solve the route update problem for a bounded number of flows on DAGs. At the heart of our algorithm lies a novel decomposition of the flow network that allows us to express and resolve reconfiguration dependencies among flows.

Cite as

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht. Congestion-Free Rerouting of Flows on DAGs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 143:1-143:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{akhoondianamiri_et_al:LIPIcs.ICALP.2018.143,
  author =	{Akhoondian Amiri, Saeed and Dudycz, Szymon and Schmid, Stefan and Wiederrecht, Sebastian},
  title =	{{Congestion-Free Rerouting of Flows on DAGs}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{143:1--143:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.143},
  URN =		{urn:nbn:de:0030-drops-91471},
  doi =		{10.4230/LIPIcs.ICALP.2018.143},
  annote =	{Keywords: Unsplittable Flows, Reconfiguration, DAGs, FPT, NP-Hardness}
}
  • Refine by Type
  • 4 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2021
  • 1 2018

  • Refine by Author
  • 1 Akhoondian Amiri, Saeed
  • 1 Barman, Siddharth
  • 1 Dudycz, Szymon
  • 1 Fawzi, Omar
  • 1 Fermé, Paul
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs

  • Refine by Classification
  • 1 Mathematics of computing → Matroids and greedoids
  • 1 Networks → Network algorithms
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Network flows
  • Show More...

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 1 Capacitated Vehicle Routing
  • 1 Combinatorial Optimization
  • 1 Concave Function
  • 1 Coverage Problems
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail