5 Search Results for "Kantor, Erez"


Document
Track A: Algorithms, Complexity and Games
3.415-Approximation for Coflow Scheduling via Iterated Rounding

Authors: Lars Rohwedder and Leander Schnaars

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We provide an algorithm giving a 140/41 (< 3.415)-approximation for Coflow Scheduling and a 4.36-approximation for Coflow Scheduling with release dates. This improves upon the best known 4- and respectively 5-approximations and addresses an open question posed by Agarwal, Rajakrishnan, Narayan, Agarwal, Shmoys, and Vahdat [Agarwal et al., 2018], Fukunaga [Fukunaga, 2022], and others. We additionally show that in an asymptotic setting, the algorithm achieves a (2+ε)-approximation, which is essentially optimal under ℙ ≠ NP. The improvements are achieved using a novel edge allocation scheme using iterated LP rounding together with a framework which enables establishing strong bounds for combinations of several edge allocation algorithms.

Cite as

Lars Rohwedder and Leander Schnaars. 3.415-Approximation for Coflow Scheduling via Iterated Rounding. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 128:1-128:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{rohwedder_et_al:LIPIcs.ICALP.2025.128,
  author =	{Rohwedder, Lars and Schnaars, Leander},
  title =	{{3.415-Approximation for Coflow Scheduling via Iterated Rounding}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{128:1--128:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.128},
  URN =		{urn:nbn:de:0030-drops-235050},
  doi =		{10.4230/LIPIcs.ICALP.2025.128},
  annote =	{Keywords: Coflow Scheduling, Approximation Algorithms, Iterated Rounding}
}
Document
Online Disjoint Set Covers: Randomization Is Not Necessary

Authors: Marcin Bienkowski, Jarosław Byrka, and Łukasz Jeż

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
In the online disjoint set covers problem, the edges of a hypergraph are revealed online, and the goal is to partition them into a maximum number of disjoint set covers. That is, n nodes of a hypergraph are given at the beginning, and then a sequence of hyperedges (subsets of [n]) is presented to an algorithm. For each hyperedge, an online algorithm must assign a color (an integer). Once an input terminates, the gain of the algorithm is the number of colors that correspond to valid set covers (i.e., the union of hyperedges that have that color contains all n nodes). We present a deterministic online algorithm that is O(log² n)-competitive, exponentially improving on the previous bound of O(n) and matching the performance of the best randomized algorithm by Emek et al. [ESA 2019]. For color selection, our algorithm uses a novel potential function, which can be seen as an online counterpart of the derandomization method of conditional probabilities and pessimistic estimators. There are only a few cases where derandomization has been successfully used in the field of online algorithms. In contrast to previous approaches, our result extends to the following new challenges: (i) the potential function derandomizes not only the Chernoff bound, but also the coupon collector’s problem, (ii) the value of Opt of the maximization problem is not bounded a priori, and (iii) we do not produce a fractional solution first, but work directly on the input.

Cite as

Marcin Bienkowski, Jarosław Byrka, and Łukasz Jeż. Online Disjoint Set Covers: Randomization Is Not Necessary. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2025.18,
  author =	{Bienkowski, Marcin and Byrka, Jaros{\l}aw and Je\.{z}, {\L}ukasz},
  title =	{{Online Disjoint Set Covers: Randomization Is Not Necessary}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.18},
  URN =		{urn:nbn:de:0030-drops-228433},
  doi =		{10.4230/LIPIcs.STACS.2025.18},
  annote =	{Keywords: Disjoint Set Covers, Derandomization, pessimistic Estimator, potential Function, online Algorithms, competitive Analysis}
}
Document
Position
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Authors: Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Large Language Models (LLMs) have taken Knowledge Representation - and the world - by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Cite as

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language Models and Knowledge Graphs: Opportunities and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{pan_et_al:TGDK.1.1.2,
  author =	{Pan, Jeff Z. and Razniewski, Simon and Kalo, Jan-Christoph and Singhania, Sneha and Chen, Jiaoyan and Dietze, Stefan and Jabeen, Hajira and Omeliyanenko, Janna and Zhang, Wen and Lissandrini, Matteo and Biswas, Russa and de Melo, Gerard and Bonifati, Angela and Vakaj, Edlira and Dragoni, Mauro and Graux, Damien},
  title =	{{Large Language Models and Knowledge Graphs: Opportunities and Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:38},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.2},
  URN =		{urn:nbn:de:0030-drops-194766},
  doi =		{10.4230/TGDK.1.1.2},
  annote =	{Keywords: Large Language Models, Pre-trained Language Models, Knowledge Graphs, Ontology, Retrieval Augmented Language Models}
}
Document
Online Disjoint Set Cover Without Prior Knowledge

Authors: Yuval Emek, Adam Goldbraikh, and Erez Kantor

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
The disjoint set cover (DSC) problem is a fundamental combinatorial optimization problem concerned with partitioning the (hyper)edges of a hypergraph into (pairwise disjoint) clusters so that the number of clusters that cover all nodes is maximized. In its online version, the edges arrive one-by-one and should be assigned to clusters in an irrevocable fashion without knowing the future edges. This paper investigates the competitiveness of online DSC algorithms. Specifically, we develop the first (randomized) online DSC algorithm that guarantees a poly-logarithmic (O(log^{2} n)) competitive ratio without prior knowledge of the hypergraph’s minimum degree. On the negative side, we prove that the competitive ratio of any randomized online DSC algorithm must be at least Omega((log n)/(log log n)) (even if the online algorithm does know the minimum degree in advance), thus establishing the first lower bound on the competitive ratio of randomized online DSC algorithms.

Cite as

Yuval Emek, Adam Goldbraikh, and Erez Kantor. Online Disjoint Set Cover Without Prior Knowledge. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 44:1-44:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{emek_et_al:LIPIcs.ESA.2019.44,
  author =	{Emek, Yuval and Goldbraikh, Adam and Kantor, Erez},
  title =	{{Online Disjoint Set Cover Without Prior Knowledge}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{44:1--44:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.44},
  URN =		{urn:nbn:de:0030-drops-111654},
  doi =		{10.4230/LIPIcs.ESA.2019.44},
  annote =	{Keywords: disjoint set cover, online algorithms, competitive analysis, competitiveness with high probability}
}
Document
Improved Algorithms for Scheduling Unsplittable Flows on Paths

Authors: Hamidreza Jahanjou, Erez Kantor, and Rajmohan Rajaraman

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In this paper, we investigate offline and online algorithms for Round-UFPP, the problem of minimizing the number of rounds required to schedule a set of unsplittable flows of non-uniform sizes on a given path with non-uniform edge capacities. Round-UFPP is NP-hard and constant-factor approximation algorithms are known under the no bottleneck assumption (NBA), which stipulates that maximum size of a flow is at most the minimum edge capacity. We study Round-UFPP without the NBA, and present improved online and offline algorithms. We first study offline Round-UFPP for a restricted class of instances called alpha-small, where the size of each flow is at most alpha times the capacity of its bottleneck edge, and present an O(log(1/(1 - alpha)))-approximation algorithm. Our main result is an online O(log log cmax)-competitive algorithm for Round-UFPP for general instances, where cmax is the largest edge capacities, improving upon the previous best bound of O(log cmax) due to [16]. Our result leads to an offline O(min(log n, log m, log log cmax))- approximation algorithm and an online O(min(log m, log log cmax))-competitive algorithm for Round-UFPP, where n is the number of flows and m is the number of edges.

Cite as

Hamidreza Jahanjou, Erez Kantor, and Rajmohan Rajaraman. Improved Algorithms for Scheduling Unsplittable Flows on Paths. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 49:1-49:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jahanjou_et_al:LIPIcs.ISAAC.2017.49,
  author =	{Jahanjou, Hamidreza and Kantor, Erez and Rajaraman, Rajmohan},
  title =	{{Improved Algorithms for Scheduling Unsplittable Flows on Paths}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{49:1--49:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.49},
  URN =		{urn:nbn:de:0030-drops-82292},
  doi =		{10.4230/LIPIcs.ISAAC.2017.49},
  annote =	{Keywords: Approximation algorithms, Online algorithms, Unsplittable flows, Interval coloring, Flow scheduling}
}
  • Refine by Type
  • 5 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2023
  • 1 2019
  • 1 2017

  • Refine by Author
  • 2 Kantor, Erez
  • 1 Bienkowski, Marcin
  • 1 Biswas, Russa
  • 1 Bonifati, Angela
  • 1 Byrka, Jarosław
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs
  • 1 TGDK

  • Refine by Classification
  • 2 Theory of computation → Online algorithms
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Natural language processing
  • 1 General and reference → Surveys and overviews
  • 1 Theory of computation → Scheduling algorithms

  • Refine by Keyword
  • 1 Approximation Algorithms
  • 1 Approximation algorithms
  • 1 Coflow Scheduling
  • 1 Derandomization
  • 1 Disjoint Set Covers
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail