5 Search Results for "Le, Hoang-Oanh"


Document
CMSO-Transducing Tree-Like Graph Decompositions

Authors: Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim, and Noleen Köhler

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We show that given a graph G we can CMSO-transduce its modular decomposition, its split decomposition and its bi-join decomposition. This improves results by Courcelle [Logical Methods in Computer Science, 2006] who gave such transductions using order-invariant MSO, a strictly more expressive logic than CMSO. Our methods more generally yield C_{2}MSO-transductions of the canonical decomposition of weakly-partitive set systems and weakly-bipartitive systems of bipartitions.

Cite as

Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim, and Noleen Köhler. CMSO-Transducing Tree-Like Graph Decompositions. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{campbell_et_al:LIPIcs.STACS.2025.22,
  author =	{Campbell, Rutger and Guillon, Bruno and Kant\'{e}, Mamadou Moustapha and Kim, Eun Jung and K\"{o}hler, Noleen},
  title =	{{CMSO-Transducing Tree-Like Graph Decompositions}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.22},
  URN =		{urn:nbn:de:0030-drops-228474},
  doi =		{10.4230/LIPIcs.STACS.2025.22},
  annote =	{Keywords: MSO-transduction, MSO-definability, graph decomposisions}
}
Document
Matching Cuts in Graphs of High Girth and H-Free Graphs

Authors: Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
The (Perfect) Matching Cut problem is to decide if a connected graph has a (perfect) matching that is also an edge cut. The Disconnected Perfect Matching problem is to decide if a connected graph has a perfect matching that contains a matching cut. Both Matching Cut and Disconnected Perfect Matching are NP-complete for planar graphs of girth 5, whereas Perfect Matching Cut is known to be NP-complete even for subcubic bipartite graphs of arbitrarily large fixed girth. We prove that Matching Cut and Disconnected Perfect Matching are also NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Our result for Matching Cut resolves a 20-year old open problem. We also show that the more general problem d-Cut, for every fixed d ≥ 1, is NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Furthermore, we show that Matching Cut, Perfect Matching Cut and Disconnected Perfect Matching are NP-complete for H-free graphs whenever H contains a connected component with two vertices of degree at least 3. Afterwards, we update the state-of-the-art summaries for H-free graphs and compare them with each other, and with a known and full classification of the Maximum Matching Cut problem, which is to determine a largest matching cut of a graph G. Finally, by combining existing results, we obtain a complete complexity classification of Perfect Matching Cut for H-subgraph-free graphs where H is any finite set of graphs.

Cite as

Carl Feghali, Felicia Lucke, Daniël Paulusma, and Bernard Ries. Matching Cuts in Graphs of High Girth and H-Free Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{feghali_et_al:LIPIcs.ISAAC.2023.31,
  author =	{Feghali, Carl and Lucke, Felicia and Paulusma, Dani\"{e}l and Ries, Bernard},
  title =	{{Matching Cuts in Graphs of High Girth and H-Free Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.31},
  URN =		{urn:nbn:de:0030-drops-193332},
  doi =		{10.4230/LIPIcs.ISAAC.2023.31},
  annote =	{Keywords: matching cut, perfect matching, girth, H-free graph}
}
Document
Complexity of the Cluster Vertex Deletion Problem on H-Free Graphs

Authors: Hoang-Oanh Le and Van Bang Le

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
The well-known Cluster Vertex Deletion problem (cluster-vd) asks for a given graph G and an integer k whether it is possible to delete at most k vertices of G such that the resulting graph is a cluster graph (a disjoint union of cliques). We give a complete characterization of graphs H for which cluster-vd on H-free graphs is polynomially solvable and for which it is NP-complete.

Cite as

Hoang-Oanh Le and Van Bang Le. Complexity of the Cluster Vertex Deletion Problem on H-Free Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 68:1-68:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{le_et_al:LIPIcs.MFCS.2022.68,
  author =	{Le, Hoang-Oanh and Le, Van Bang},
  title =	{{Complexity of the Cluster Vertex Deletion Problem on H-Free Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{68:1--68:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.68},
  URN =		{urn:nbn:de:0030-drops-168663},
  doi =		{10.4230/LIPIcs.MFCS.2022.68},
  annote =	{Keywords: Cluster vertex deletion, Vertex cover, Computational complexity, Complexity dichotomy}
}
Document
Constrained Representations of Map Graphs and Half-Squares

Authors: Hoang-Oanh Le and Van Bang Le

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
The square of a graph H, denoted H^2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B=(X,Y,E_B) are the subgraphs of B^2 induced by the color classes X and Y, B^2[X] and B^2[Y]. For a given graph G=(V,E_G), if G=B^2[V] for some bipartite graph B=(V,W,E_B), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM , 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G=(V,E_G) has a witness with at most 3|V|-6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity dichotomy: Given a graph G=(V,E_G) and an integer k, deciding if G=B^2[V] for some tree-convex bipartite graph B=(V,W,E_B) with |W|<=k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs.

Cite as

Hoang-Oanh Le and Van Bang Le. Constrained Representations of Map Graphs and Half-Squares. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{le_et_al:LIPIcs.MFCS.2019.13,
  author =	{Le, Hoang-Oanh and Le, Van Bang},
  title =	{{Constrained Representations of Map Graphs and Half-Squares}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{13:1--13:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.13},
  URN =		{urn:nbn:de:0030-drops-109574},
  doi =		{10.4230/LIPIcs.MFCS.2019.13},
  annote =	{Keywords: map graph, half-square, edge clique cover, edge clique partition, graph classes}
}
Document
On the Complexity of Matching Cut in Graphs of Fixed Diameter

Authors: Hoang-Oanh Le and Van Bang Le

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
In a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of deciding whether or not a given graph has a matching cut, which is known to be NP-complete even when restricted to bipartite graphs. It has been proved that Matching Cut is polynomially solvable for graphs of diameter two. In this paper, we show that, for any fixed integer d geq 4, Matching Cut is NP-complete in the class of graphs of diameter d. This almost resolves an open problem posed by Borowiecki and Jesse-Józefczyk in [Matching cutsets in graphs of diameter 2, Theoretical Computer Science 407 (2008) 574-582]. We then show that, for any fixed integer d geq 5, Matching Cut is NP-complete even when restricted to the class of bipartite graphs of diameter d. Complementing the hardness results, we show that Matching Cut is in polynomial-time solvable in the class of bipartite graphs of diameter at most three, and point out a new and simple polynomial-time algorithm solving Matching Cut in graphs of diameter 2.

Cite as

Hoang-Oanh Le and Van Bang Le. On the Complexity of Matching Cut in Graphs of Fixed Diameter. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 50:1-50:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{le_et_al:LIPIcs.ISAAC.2016.50,
  author =	{Le, Hoang-Oanh and Le, Van Bang},
  title =	{{On the Complexity of Matching Cut in Graphs of Fixed Diameter}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{50:1--50:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.50},
  URN =		{urn:nbn:de:0030-drops-68205},
  doi =		{10.4230/LIPIcs.ISAAC.2016.50},
  annote =	{Keywords: matching cut, NP-hardness, graph algorithm, computational complexity, decomposable graph}
}
  • Refine by Type
  • 5 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 1 2023
  • 1 2022
  • 1 2019
  • 1 2016

  • Refine by Author
  • 3 Le, Hoang-Oanh
  • 3 Le, Van Bang
  • 1 Campbell, Rutger
  • 1 Feghali, Carl
  • 1 Guillon, Bruno
  • Show More...

  • Refine by Series/Journal
  • 5 LIPIcs

  • Refine by Classification
  • 2 Mathematics of computing → Graph algorithms
  • 2 Mathematics of computing → Graph theory
  • 1 Theory of computation → Finite Model Theory
  • 1 Theory of computation → Graph algorithms analysis

  • Refine by Keyword
  • 2 matching cut
  • 1 Cluster vertex deletion
  • 1 Complexity dichotomy
  • 1 Computational complexity
  • 1 H-free graph
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail