5 Search Results for "Matheny, Michael"


Document
Efficient Quantum Pseudorandomness from Hamiltonian Phase States

Authors: John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Quantum pseudorandomness has found applications in many areas of quantum information, ranging from entanglement theory, to models of scrambling phenomena in chaotic quantum systems, and, more recently, in the foundations of quantum cryptography. Kretschmer (TQC '21) showed that both pseudorandom states and pseudorandom unitaries exist even in a world without classical one-way functions. To this day, however, all known constructions require classical cryptographic building blocks which are themselves synonymous with the existence of one-way functions, and which are also challenging to implement on realistic quantum hardware. In this work, we seek to make progress on both of these fronts simultaneously - by decoupling quantum pseudorandomness from classical cryptography altogether. We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem, which is the task of decoding output states of a random instantaneous quantum polynomial-time (IQP) circuit. Hamiltonian phase states can be generated very efficiently using only Hadamard gates, single-qubit Z rotations and CNOT circuits. We show that the hardness of our problem reduces to a worst-case version of the problem, and we provide evidence that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions. We also show information-theoretic hardness when only few copies of HPS are available by proving an approximate t-design property of our ensemble. Finally, we show that our HPS assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives, ranging from pseudorandom states, to quantum pseudoentanglement, to pseudorandom unitaries, and even primitives such as public-key encryption with quantum keys.

Cite as

John Bostanci, Jonas Haferkamp, Dominik Hangleiter, and Alexander Poremba. Efficient Quantum Pseudorandomness from Hamiltonian Phase States. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bostanci_et_al:LIPIcs.TQC.2025.9,
  author =	{Bostanci, John and Haferkamp, Jonas and Hangleiter, Dominik and Poremba, Alexander},
  title =	{{Efficient Quantum Pseudorandomness from Hamiltonian Phase States}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.9},
  URN =		{urn:nbn:de:0030-drops-240586},
  doi =		{10.4230/LIPIcs.TQC.2025.9},
  annote =	{Keywords: Quantum pseudorandomness, quantum phase states, quantum cryptography}
}
Document
On Fault Tolerant Single-Shot Logical State Preparation and Robust Long-Range Entanglement

Authors: Thiago Bergamaschi and Yunchao Liu

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Preparing encoded logical states is the first step in a fault-tolerant quantum computation. Standard approaches based on concatenation or repeated measurement incur a significant time overhead. The Raussendorf-Bravyi-Harrington cluster state [Raussendorf et al., 2005] offers an alternative: a single-shot preparation of encoded states of the surface code, by means of a constant depth quantum circuit, followed by a single round of measurement and classical feedforward [Bravyi et al., 2020]. In this work we generalize this approach and prove that single-shot logical state preparation can be achieved for arbitrary quantum LDPC codes. Our proof relies on a minimum-weight decoder and is based on a generalization of Gottesman’s clustering-of-errors argument [Gottesman, 2014]. As an application, we also prove single-shot preparation of the encoded GHZ state in arbitrary quantum LDPC codes. This shows that adaptive noisy constant depth quantum circuits are capable of generating generic robust long-range entanglement.

Cite as

Thiago Bergamaschi and Yunchao Liu. On Fault Tolerant Single-Shot Logical State Preparation and Robust Long-Range Entanglement. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 16:1-16:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bergamaschi_et_al:LIPIcs.ITCS.2025.16,
  author =	{Bergamaschi, Thiago and Liu, Yunchao},
  title =	{{On Fault Tolerant Single-Shot Logical State Preparation and Robust Long-Range Entanglement}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{16:1--16:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.16},
  URN =		{urn:nbn:de:0030-drops-226444},
  doi =		{10.4230/LIPIcs.ITCS.2025.16},
  annote =	{Keywords: Quantum error correction, fault tolerance, single-shot error correction, logical state preparation}
}
Document
Approximate Maximum Halfspace Discrepancy

Authors: Michael Matheny and Jeff M. Phillips

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Consider the geometric range space (X, H_d) where X ⊂ ℝ^d and H_d is the set of ranges defined by d-dimensional halfspaces. In this setting we consider that X is the disjoint union of a red and blue set. For each halfspace h ∈ H_d define a function Φ(h) that measures the "difference" between the fraction of red and fraction of blue points which fall in the range h. In this context the maximum discrepancy problem is to find the h^* = arg max_{h ∈ (X, H_d)} Φ(h). We aim to instead find an ĥ such that Φ(h^*) - Φ(ĥ) ≤ ε. This is the central problem in linear classification for machine learning, in spatial scan statistics for spatial anomaly detection, and shows up in many other areas. We provide a solution for this problem in O(|X| + (1/ε^d) log⁴ (1/ε)) time, for constant d, which improves polynomially over the previous best solutions. For d = 2 we show that this is nearly tight through conditional lower bounds. For different classes of Φ we can either provide a Ω(|X|^{3/2 - o(1)}) time lower bound for the exact solution with a reduction to APSP, or an Ω(|X| + 1/ε^{2-o(1)}) lower bound for the approximate solution with a reduction to 3Sum. A key technical result is a ε-approximate halfspace range counting data structure of size O(1/ε^d) with O(log (1/ε)) query time, which we can build in O(|X| + (1/ε^d) log⁴ (1/ε)) time.

Cite as

Michael Matheny and Jeff M. Phillips. Approximate Maximum Halfspace Discrepancy. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{matheny_et_al:LIPIcs.ISAAC.2021.4,
  author =	{Matheny, Michael and Phillips, Jeff M.},
  title =	{{Approximate Maximum Halfspace Discrepancy}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.4},
  URN =		{urn:nbn:de:0030-drops-154377},
  doi =		{10.4230/LIPIcs.ISAAC.2021.4},
  annote =	{Keywords: range spaces, halfspaces, scan statistics, fine-grained complexity}
}
Document
Computing Approximate Statistical Discrepancy

Authors: Michael Matheny and Jeff M. Phillips

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Consider a geometric range space (X,A) where X is comprised of the union of a red set R and blue set B. Let Phi(A) define the absolute difference between the fraction of red and fraction of blue points which fall in the range A. The maximum discrepancy range A^* = arg max_{A in (X,A)} Phi(A). Our goal is to find some A^ in (X,A) such that Phi(A^*) - Phi(A^) <= epsilon. We develop general algorithms for this approximation problem for range spaces with bounded VC-dimension, as well as significant improvements for specific geometric range spaces defined by balls, halfspaces, and axis-aligned rectangles. This problem has direct applications in discrepancy evaluation and classification, and we also show an improved reduction to a class of problems in spatial scan statistics.

Cite as

Michael Matheny and Jeff M. Phillips. Computing Approximate Statistical Discrepancy. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 32:1-32:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{matheny_et_al:LIPIcs.ISAAC.2018.32,
  author =	{Matheny, Michael and Phillips, Jeff M.},
  title =	{{Computing Approximate Statistical Discrepancy}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{32:1--32:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.32},
  URN =		{urn:nbn:de:0030-drops-99800},
  doi =		{10.4230/LIPIcs.ISAAC.2018.32},
  annote =	{Keywords: Scan Statistics, Discrepancy, Rectangles}
}
Document
Practical Low-Dimensional Halfspace Range Space Sampling

Authors: Michael Matheny and Jeff M. Phillips

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
We develop, analyze, implement, and compare new algorithms for creating epsilon-samples of range spaces defined by halfspaces which have size sub-quadratic in 1/epsilon, and have runtime linear in the input size and near-quadratic in 1/epsilon. The key to our solution is an efficient construction of partition trees. Despite not requiring any techniques developed after the early 1990s, apparently such a result was never explicitly described. We demonstrate that our implementations, including new implementations of several variants of partition trees, do indeed run in time linear in the input, appear to run linear in output size, and observe smaller error for the same size sample compared to the ubiquitous random sample (which requires size quadratic in 1/epsilon). This result has direct applications in speeding up discrepancy evaluation, approximate range counting, and spatial anomaly detection.

Cite as

Michael Matheny and Jeff M. Phillips. Practical Low-Dimensional Halfspace Range Space Sampling. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{matheny_et_al:LIPIcs.ESA.2018.62,
  author =	{Matheny, Michael and Phillips, Jeff M.},
  title =	{{Practical Low-Dimensional Halfspace Range Space Sampling}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{62:1--62:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.62},
  URN =		{urn:nbn:de:0030-drops-95250},
  doi =		{10.4230/LIPIcs.ESA.2018.62},
  annote =	{Keywords: Partitions, Range Spaces, Sampling, Halfspaces}
}
  • Refine by Type
  • 5 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2021
  • 2 2018

  • Refine by Author
  • 3 Matheny, Michael
  • 3 Phillips, Jeff M.
  • 1 Bergamaschi, Thiago
  • 1 Bostanci, John
  • 1 Haferkamp, Jonas
  • Show More...

  • Refine by Series/Journal
  • 5 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Computational geometry
  • 1 Theory of computation → Cryptographic primitives
  • 1 Theory of computation → Quantum computation theory

  • Refine by Keyword
  • 1 Discrepancy
  • 1 Halfspaces
  • 1 Partitions
  • 1 Quantum error correction
  • 1 Quantum pseudorandomness
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail