4 Search Results for "Niewerth, Matthias"


Document
Weight Annotation in Information Extraction

Authors: Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
The framework of document spanners abstracts the task of information extraction from text as a function that maps every document (a string) into a relation over the document’s spans (intervals identified by their start and end indices). For instance, the regular spanners are the closure under the Relational Algebra (RA) of the regular expressions with capture variables, and the expressive power of the regular spanners is precisely captured by the class of vset-automata - a restricted class of transducers that mark the endpoints of selected spans. In this work, we embark on the investigation of document spanners that can annotate extractions with auxiliary information such as confidence, support, and confidentiality measures. To this end, we adopt the abstraction of provenance semirings by Green et al., where tuples of a relation are annotated with the elements of a commutative semiring, and where the annotation propagates through the (positive) RA operators via the semiring operators. Hence, the proposed spanner extension, referred to as an annotator, maps every string into an annotated relation over the spans. As a specific instantiation, we explore weighted vset-automata that, similarly to weighted automata and transducers, attach semiring elements to transitions. We investigate key aspects of expressiveness, such as the closure under the positive RA, and key aspects of computational complexity, such as the enumeration of annotated answers and their ranked enumeration in the case of numeric semirings. For a number of these problems, fundamental properties of the underlying semiring, such as positivity, are crucial for establishing tractability.

Cite as

Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. Weight Annotation in Information Extraction. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{doleschal_et_al:LIPIcs.ICDT.2020.8,
  author =	{Doleschal, Johannes and Kimelfeld, Benny and Martens, Wim and Peterfreund, Liat},
  title =	{{Weight Annotation in Information Extraction}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.8},
  URN =		{urn:nbn:de:0030-drops-119325},
  doi =		{10.4230/LIPIcs.ICDT.2020.8},
  annote =	{Keywords: Information extraction, regular document spanners, weighted automata, provenance semirings, K-relations}
}
Document
Containment of UC2RPQ: The Hard and Easy Cases

Authors: Diego Figueira

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
We study the containment problem for UC2RPQ, that is, two-way Regular Path Queries, closed under conjunction, projection and union. We show a dichotomy property between PSpace-c and ExpSpace-c based on a property on the underlying graph of queries. We show that for any class C of graphs, the containment problem for queries whose underlying graph is in C is in PSpace if and only if C has bounded bridgewidth. Bridgewidth is a graph measure we introduce to this end, defined as the maximum size of a minimal edge separator of a graph.

Cite as

Diego Figueira. Containment of UC2RPQ: The Hard and Easy Cases. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{figueira:LIPIcs.ICDT.2020.9,
  author =	{Figueira, Diego},
  title =	{{Containment of UC2RPQ: The Hard and Easy Cases}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.9},
  URN =		{urn:nbn:de:0030-drops-119330},
  doi =		{10.4230/LIPIcs.ICDT.2020.9},
  annote =	{Keywords: Regular Path Queries (RPQ), 2RPQ, CRPQ, C2RPQ, UC2RPQ, graph databases, containment, inclusion, equivalence, dichotomy, graph measure, bridge-width (bridgewidth), minimal edge separator, minimal cut-set, max-cut, tree-width (treewidth)}
}
Document
A Trichotomy for Regular Trail Queries

Authors: Wim Martens, Matthias Niewerth, and Tina Trautner

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
Regular path queries (RPQs) are an essential component of graph query languages. Such queries consider a regular expression r and a directed edge-labeled graph G and search for paths in G for which the sequence of labels is in the language of r. In order to avoid having to consider infinitely many paths, some database engines restrict such paths to be trails, that is, they only consider paths without repeated edges. In this paper we consider the evaluation problem for RPQs under trail semantics, in the case where the expression is fixed. We show that, in this setting, there exists a trichotomy. More precisely, the complexity of RPQ evaluation divides the regular languages into the finite languages, the class T_tract (for which the problem is tractable), and the rest. Interestingly, the tractable class in the trichotomy is larger than for the trichotomy for simple paths, discovered by Bagan et al. [Bagan et al., 2013]. In addition to this trichotomy result, we also study characterizations of the tractable class, its expressivity, the recognition problem, closure properties, and show how the decision problem can be extended to the enumeration problem, which is relevant to practice.

Cite as

Wim Martens, Matthias Niewerth, and Tina Trautner. A Trichotomy for Regular Trail Queries. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{martens_et_al:LIPIcs.STACS.2020.7,
  author =	{Martens, Wim and Niewerth, Matthias and Trautner, Tina},
  title =	{{A Trichotomy for Regular Trail Queries}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.7},
  URN =		{urn:nbn:de:0030-drops-118681},
  doi =		{10.4230/LIPIcs.STACS.2020.7},
  annote =	{Keywords: Regular languages, query languages, path queries, graph databases, databases, complexity, trails, simple paths}
}
Document
Constant-Delay Enumeration for Nondeterministic Document Spanners

Authors: Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth

Published in: LIPIcs, Volume 127, 22nd International Conference on Database Theory (ICDT 2019)


Abstract
We consider the information extraction framework known as document spanners, and study the problem of efficiently computing the results of the extraction from an input document, where the extraction task is described as a sequential variable-set automaton (VA). We pose this problem in the setting of enumeration algorithms, where we can first run a preprocessing phase and must then produce the results with a small delay between any two consecutive results. Our goal is to have an algorithm which is tractable in combined complexity, i.e., in the sizes of the input document and the VA; while ensuring the best possible data complexity bounds in the input document size, i.e., constant delay in the document size. Several recent works at PODS'18 proposed such algorithms but with linear delay in the document size or with an exponential dependency in size of the (generally nondeterministic) input VA. In particular, Florenzano et al. suggest that our desired runtime guarantees cannot be met for general sequential VAs. We refute this and show that, given a nondeterministic sequential VA and an input document, we can enumerate the mappings of the VA on the document with the following bounds: the preprocessing is linear in the document size and polynomial in the size of the VA, and the delay is independent of the document and polynomial in the size of the VA. The resulting algorithm thus achieves tractability in combined complexity and the best possible data complexity bounds. Moreover, it is rather easy to describe, in particular for the restricted case of so-called extended VAs.

Cite as

Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-Delay Enumeration for Nondeterministic Document Spanners. In 22nd International Conference on Database Theory (ICDT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 127, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{amarilli_et_al:LIPIcs.ICDT.2019.22,
  author =	{Amarilli, Antoine and Bourhis, Pierre and Mengel, Stefan and Niewerth, Matthias},
  title =	{{Constant-Delay Enumeration for Nondeterministic Document Spanners}},
  booktitle =	{22nd International Conference on Database Theory (ICDT 2019)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-101-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{127},
  editor =	{Barcelo, Pablo and Calautti, Marco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2019.22},
  URN =		{urn:nbn:de:0030-drops-103246},
  doi =		{10.4230/LIPIcs.ICDT.2019.22},
  annote =	{Keywords: enumeration, spanners, automata}
}
  • Refine by Author
  • 2 Martens, Wim
  • 2 Niewerth, Matthias
  • 1 Amarilli, Antoine
  • 1 Bourhis, Pierre
  • 1 Doleschal, Johannes
  • Show More...

  • Refine by Classification
  • 2 Information systems → Information extraction
  • 2 Theory of computation → Formal languages and automata theory
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Information systems → Graph-based database models
  • 1 Information systems → Information retrieval query processing
  • Show More...

  • Refine by Keyword
  • 2 graph databases
  • 1 2RPQ
  • 1 C2RPQ
  • 1 CRPQ
  • 1 Information extraction
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2020
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail