7 Search Results for "Simons, Martin"


Document
RANDOM
Subset Sum in Time 2^{n/2} / poly(n)

Authors: Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) n-input Subset Sum problem that runs in time 2^{(1/2 - c)n} for some constant c > 0. In this paper we give a Subset Sum algorithm with worst-case running time O(2^{n/2} ⋅ n^{-γ}) for a constant γ > 0.5023 in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical "meet-in-the-middle" algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time O(2^{n/2}) in these memory models [Horowitz and Sahni, 1974]. Our algorithm combines a number of different techniques, including the "representation method" introduced by Howgrave-Graham and Joux [Howgrave-Graham and Joux, 2010] and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof [Austrin et al., 2016], and Nederlof and Węgrzycki [Jesper Nederlof and Karol Wegrzycki, 2021], and "bit-packing" techniques used in the work of Baran, Demaine, and Pǎtraşcu [Baran et al., 2005] on subquadratic algorithms for 3SUM.

Cite as

Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset Sum in Time 2^{n/2} / poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2023.39,
  author =	{Chen, Xi and Jin, Yaonan and Randolph, Tim and Servedio, Rocco A.},
  title =	{{Subset Sum in Time 2^\{n/2\} / poly(n)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  URN =		{urn:nbn:de:0030-drops-188641},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  annote =	{Keywords: Exact algorithms, subset sum, log shaving}
}
Document
Can You Solve Closest String Faster Than Exhaustive Search?

Authors: Amir Abboud, Nick Fischer, Elazar Goldenberg, Karthik C. S., and Ron Safier

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the fundamental problem of finding the best string to represent a given set, in the form of the Closest String problem: Given a set X ⊆ Σ^d of n strings, find the string x^* minimizing the radius of the smallest Hamming ball around x^* that encloses all the strings in X. In this paper, we investigate whether the Closest String problem admits algorithms that are faster than the trivial exhaustive search algorithm. We obtain the following results for the two natural versions of the problem: - In the continuous Closest String problem, the goal is to find the solution string x^* anywhere in Σ^d. For binary strings, the exhaustive search algorithm runs in time O(2^d poly(nd)) and we prove that it cannot be improved to time O(2^{(1-ε) d} poly(nd)), for any ε > 0, unless the Strong Exponential Time Hypothesis fails. - In the discrete Closest String problem, x^* is required to be in the input set X. While this problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be quadratic time n^{2 ± o(1)} whenever the dimension is ω(log n) < d < n^o(1). We complement this known hardness result with new algorithms, proving essentially that whenever d falls out of this hard range, the discrete Closest String problem can be solved faster than exhaustive search. In the small-d regime, our algorithm is based on a novel application of the inclusion-exclusion principle. Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest String problem, called the Remotest String problem, where the task is to find a string maximizing the Hamming distance to all the strings in X.

Cite as

Amir Abboud, Nick Fischer, Elazar Goldenberg, Karthik C. S., and Ron Safier. Can You Solve Closest String Faster Than Exhaustive Search?. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 3:1-3:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2023.3,
  author =	{Abboud, Amir and Fischer, Nick and Goldenberg, Elazar and Karthik C. S. and Safier, Ron},
  title =	{{Can You Solve Closest String Faster Than Exhaustive Search?}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{3:1--3:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.3},
  URN =		{urn:nbn:de:0030-drops-186566},
  doi =		{10.4230/LIPIcs.ESA.2023.3},
  annote =	{Keywords: Closest string, fine-grained complexity, SETH, inclusion-exclusion}
}
Document
A Local-To-Global Theorem for Congested Shortest Paths

Authors: Shyan Akmal and Nicole Wein

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Amiri and Wargalla proved the following local-to-global theorem about shortest paths in directed acyclic graphs (DAGs): if G is a weighted DAG with the property that for each subset S of 3 nodes there is a shortest path containing every node in S, then there exists a pair (s,t) of nodes such that there is a shortest st-path containing every node in G. We extend this theorem to general graphs. For undirected graphs, we prove that the same theorem holds (up to a difference in the constant 3). For directed graphs, we provide a counterexample to the theorem (for any constant). However, we prove a roundtrip analogue of the theorem which guarantees there exists a pair (s,t) of nodes such that every node in G is contained in the union of a shortest st-path and a shortest ts-path. The original local-to-global theorem for DAGs has an application to the k-Shortest Paths with Congestion c ((k,c)-SPC) problem. In this problem, we are given a weighted graph G, together with k node pairs (s_1,t_1),… ,(s_k,t_k), and a positive integer c ≤ k, and tasked with finding a collection of paths P_1,… , P_k such that each P_i is a shortest path from s_i to t_i, and every node in the graph is on at most c paths P_i, or reporting that no such collection of paths exists. When c = k, there are no congestion constraints, and the problem can be solved easily by running a shortest path algorithm for each pair (s_i,t_i) independently. At the other extreme, when c = 1, the (k,c)-SPC problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of c, to obtain an algorithm for (k,c)-SPC on DAGs that runs in polynomial time when k-c is constant. In the same way, we prove that (k,c)-SPC can be solved in polynomial time on undirected graphs whenever k-c is constant. For directed graphs, because of our counterexample to the original theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k,c)-SPC. Even without an algorithmic application, our proof for directed graphs may be of broader interest because it characterizes intriguing structural properties of shortest paths in directed graphs.

Cite as

Shyan Akmal and Nicole Wein. A Local-To-Global Theorem for Congested Shortest Paths. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{akmal_et_al:LIPIcs.ESA.2023.8,
  author =	{Akmal, Shyan and Wein, Nicole},
  title =	{{A Local-To-Global Theorem for Congested Shortest Paths}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.8},
  URN =		{urn:nbn:de:0030-drops-186618},
  doi =		{10.4230/LIPIcs.ESA.2023.8},
  annote =	{Keywords: disjoint paths, shortest paths, congestion, parameterized complexity}
}
Document
Algorithmic Persuasion with Evidence

Authors: Martin Hoefer, Pasin Manurangsi, and Alexandros Psomas

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We consider a game of persuasion with evidence between a sender and a receiver. The sender has private information. By presenting evidence on the information, the sender wishes to persuade the receiver to take a single action (e.g., hire a job candidate, or convict a defendant). The sender’s utility depends solely on whether or not the receiver takes the action. The receiver’s utility depends on both the action as well as the sender’s private information. We study three natural variations. First, we consider sequential equilibria of the game without commitment power. Second, we consider a persuasion variant, where the sender commits to a signaling scheme and then the receiver, after seeing the evidence, takes the action or not. Third, we study a delegation variant, where the receiver first commits to taking the action if being presented certain evidence, and then the sender presents evidence to maximize the probability the action is taken. We study these variants through the computational lens, and give hardness results, optimal approximation algorithms, as well as polynomial-time algorithms for special cases. Among our results is an approximation algorithm that rounds a semidefinite program that might be of independent interest, since, to the best of our knowledge, it is the first such approximation algorithm for a natural problem in algorithmic economics.

Cite as

Martin Hoefer, Pasin Manurangsi, and Alexandros Psomas. Algorithmic Persuasion with Evidence. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hoefer_et_al:LIPIcs.ITCS.2021.3,
  author =	{Hoefer, Martin and Manurangsi, Pasin and Psomas, Alexandros},
  title =	{{Algorithmic Persuasion with Evidence}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.3},
  URN =		{urn:nbn:de:0030-drops-135420},
  doi =		{10.4230/LIPIcs.ITCS.2021.3},
  annote =	{Keywords: Bayesian Persuasion, Semidefinite Programming, Approximation Algorithms}
}
Document
Guarded Teams: The Horizontally Guarded Case

Authors: Erich Grädel and Martin Otto

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
Team semantics admits reasoning about large sets of data, modelled by sets of assignments (called teams), with first-order syntax. This leads to high expressive power and complexity, particularly in the presence of atomic dependency properties for such data sets. It is therefore interesting to explore fragments and variants of logic with team semantics that permit model-theoretic tools and algorithmic methods to control this explosion in expressive power and complexity. We combine here the study of team semantics with the notion of guarded logics, which are well-understood in the case of classical Tarski semantics, and known to strike a good balance between expressive power and algorithmic manageability. In fact there are two strains of guardedness for teams. Horizontal guardedness requires the individual assignments of the team to be guarded in the usual sense of guarded logics. Vertical guardedness, on the other hand, posits an additional (or definable) hypergraph structure on relational structures in order to interpret a constraint on the component-wise variability of assignments within teams. In this paper we investigate the horizontally guarded case. We study horizontally guarded logics for teams and appropriate notions of guarded team bisimulation. In particular, we establish characterisation theorems that relate invariance under guarded team bisimulation with guarded team logics, but also with logics under classical Tarski semantics.

Cite as

Erich Grädel and Martin Otto. Guarded Teams: The Horizontally Guarded Case. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gradel_et_al:LIPIcs.CSL.2020.22,
  author =	{Gr\"{a}del, Erich and Otto, Martin},
  title =	{{Guarded Teams: The Horizontally Guarded Case}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.22},
  URN =		{urn:nbn:de:0030-drops-116650},
  doi =		{10.4230/LIPIcs.CSL.2020.22},
  annote =	{Keywords: Team semantics, guarded logics, bisimulation, characterisation theorems}
}
Document
The Unbearable Hardness of Unknotting

Authors: Arnaud de Mesmay, Yo'av Rieck, Eric Sedgwick, and Martin Tancer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We prove that deciding if a diagram of the unknot can be untangled using at most k Reidemeister moves (where k is part of the input) is NP-hard. We also prove that several natural questions regarding links in the 3-sphere are NP-hard, including detecting whether a link contains a trivial sublink with n components, computing the unlinking number of a link, and computing a variety of link invariants related to four-dimensional topology (such as the 4-ball Euler characteristic, the slicing number, and the 4-dimensional clasp number).

Cite as

Arnaud de Mesmay, Yo'av Rieck, Eric Sedgwick, and Martin Tancer. The Unbearable Hardness of Unknotting. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 49:1-49:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{demesmay_et_al:LIPIcs.SoCG.2019.49,
  author =	{de Mesmay, Arnaud and Rieck, Yo'av and Sedgwick, Eric and Tancer, Martin},
  title =	{{The Unbearable Hardness of Unknotting}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{49:1--49:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.49},
  URN =		{urn:nbn:de:0030-drops-104530},
  doi =		{10.4230/LIPIcs.SoCG.2019.49},
  annote =	{Keywords: Knot, Link, NP-hard, Reidemeister move, Unknot recognition, Unlinking number, intermediate invariants}
}
Document
The Logical Execution Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl Seminar 18092)

Authors: Rolf Ernst, Stefan Kuntz, Sophie Quinton, and Martin Simons

Published in: Dagstuhl Reports, Volume 8, Issue 2 (2018)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 18092 "The Logical Execution Time Paradigm: New Perspectives for Multicore Systems". The seminar brought together academic and industrial researchers working on challenges related to the Logical Execution Time Paradigm (LET). The main purpose was to promote a closer interaction between the sub-communities involved in the application of LET to multicore systems, with a particular emphasis on the automotive domain.

Cite as

Rolf Ernst, Stefan Kuntz, Sophie Quinton, and Martin Simons. The Logical Execution Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl Seminar 18092). In Dagstuhl Reports, Volume 8, Issue 2, pp. 122-149, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{ernst_et_al:DagRep.8.2.122,
  author =	{Ernst, Rolf and Kuntz, Stefan and Quinton, Sophie and Simons, Martin},
  title =	{{The Logical Execution Time Paradigm: New Perspectives for Multicore Systems (Dagstuhl Seminar 18092)}},
  pages =	{122--149},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2018},
  volume =	{8},
  number =	{2},
  editor =	{Ernst, Rolf and Kuntz, Stefan and Quinton, Sophie and Simons, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.8.2.122},
  URN =		{urn:nbn:de:0030-drops-92939},
  doi =		{10.4230/DagRep.8.2.122},
  annote =	{Keywords: Automotive domain, logical execution time, multicore architectures, real-time systems}
}
  • Refine by Author
  • 1 Abboud, Amir
  • 1 Akmal, Shyan
  • 1 Chen, Xi
  • 1 Ernst, Rolf
  • 1 Fischer, Nick
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Mathematics of computing → Geometric topology
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Algorithmic game theory and mechanism design
  • 1 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 1 Approximation Algorithms
  • 1 Automotive domain
  • 1 Bayesian Persuasion
  • 1 Closest string
  • 1 Exact algorithms
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2023
  • 1 2018
  • 1 2019
  • 1 2020
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail