Search Results

Documents authored by Ahvonen, Veeti


Document
Descriptive Complexity for Neural Networks via Boolean Networks

Authors: Veeti Ahvonen, Damian Heiman, and Antti Kuusisto

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We investigate the descriptive complexity of a class of neural networks with unrestricted topologies and piecewise polynomial activation functions. We consider the general scenario where the running time is unlimited and floating-point numbers are used for simulating reals. We characterize these neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes of the neural networks and the corresponding Boolean rule formulae are polynomially related. In fact, in the direction from Boolean rules to neural networks, the blow-up is only linear. We also analyze the delays in running times due to the translations. In the translation from neural networks to Boolean rules, the time delay is polylogarithmic in the neural network size and linear in time. In the converse translation, the time delay is linear in both factors. We also obtain translations between the rule-based logic for Boolean networks, the diamond-free fragment of modal substitution calculus and a class of recursive Boolean circuits where the number of input and output gates match.

Cite as

Veeti Ahvonen, Damian Heiman, and Antti Kuusisto. Descriptive Complexity for Neural Networks via Boolean Networks. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ahvonen_et_al:LIPIcs.CSL.2024.9,
  author =	{Ahvonen, Veeti and Heiman, Damian and Kuusisto, Antti},
  title =	{{Descriptive Complexity for Neural Networks via Boolean Networks}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{9:1--9:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.9},
  URN =		{urn:nbn:de:0030-drops-196528},
  doi =		{10.4230/LIPIcs.CSL.2024.9},
  annote =	{Keywords: Descriptive complexity, neural networks, Boolean networks, floating-point arithmetic, logic}
}
Document
Descriptive Complexity for Distributed Computing with Circuits

Authors: Veeti Ahvonen, Damian Heiman, Lauri Hella, and Antti Kuusisto

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We consider distributed algorithms in the realistic scenario where distributed message passing is operated by circuits. We show that within this setting, modal substitution calculus MSC precisely captures the expressive power of circuits. The result is established via constructing translations that are highly efficient in relation to size. We also observe that the coloring algorithm based on Cole-Vishkin can be specified by logarithmic size programs (and thus also logarithmic size circuits) in the bounded-degree scenario.

Cite as

Veeti Ahvonen, Damian Heiman, Lauri Hella, and Antti Kuusisto. Descriptive Complexity for Distributed Computing with Circuits. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ahvonen_et_al:LIPIcs.MFCS.2023.9,
  author =	{Ahvonen, Veeti and Heiman, Damian and Hella, Lauri and Kuusisto, Antti},
  title =	{{Descriptive Complexity for Distributed Computing with Circuits}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.9},
  URN =		{urn:nbn:de:0030-drops-185433},
  doi =		{10.4230/LIPIcs.MFCS.2023.9},
  annote =	{Keywords: Descriptive complexity, distributed computing, logic, graph coloring}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail