Search Results

Documents authored by Amireddy, Prashanth


Document
RANDOM
Low-Degree Testing over Grids

Authors: Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We study the question of local testability of low (constant) degree functions from a product domain 𝒮_1 × … × 𝒮_n to a field 𝔽, where 𝒮_i ⊆ 𝔽 can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if 𝒮_i = 𝒮 for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show that there exist asymmetric grids with |𝒮_1| = ⋯ = |𝒮_n| = 3 for which testing requires ω_n(1) queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function f:𝒮_1 × ⋯ × 𝒮_n → 𝒢, for an abelian group 𝒢 is said to be a junta-degree-d function if it is a sum of d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over large grids, which may be of independent interest.

Cite as

Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan. Low-Degree Testing over Grids. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 41:1-41:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.APPROX/RANDOM.2023.41,
  author =	{Amireddy, Prashanth and Srinivasan, Srikanth and Sudan, Madhu},
  title =	{{Low-Degree Testing over Grids}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{41:1--41:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.41},
  URN =		{urn:nbn:de:0030-drops-188665},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.41},
  annote =	{Keywords: Property testing, Low-degree testing, Small-set expansion, Local testing}
}
Document
Track A: Algorithms, Complexity and Games
Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

Authors: Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A recent breakthrough work of Limaye, Srinivasan and Tavenas [Nutan Limaye et al., 2021] proved superpolynomial lower bounds for low-depth arithmetic circuits via a "hardness escalation" approach: they proved lower bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits. In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the superpolynomial lower bounds for regular formulas [Neeraj Kayal et al., 2014; Hervé Fournier et al., 2015].

Cite as

Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey. Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.ICALP.2023.12,
  author =	{Amireddy, Prashanth and Garg, Ankit and Kayal, Neeraj and Saha, Chandan and Thankey, Bhargav},
  title =	{{Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.12},
  URN =		{urn:nbn:de:0030-drops-180642},
  doi =		{10.4230/LIPIcs.ICALP.2023.12},
  annote =	{Keywords: arithmetic circuits, low-depth circuits, lower bounds, shifted partials}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail