Search Results

Documents authored by Artikis, Alexander


Document
Extending the Range of Temporal Specifications of the Run-Time Event Calculus

Authors: Periklis Mantenoglou and Alexander Artikis

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Composite event recognition (CER) frameworks reason over streams of low-level, symbolic events in order to detect instances of spatio-temporal patterns defining high-level, composite activities. The Event Calculus is a temporal, logical formalism that has been used to define composite activities in CER, while RTEC_{∘} is a formal CER framework that detects composite activities based on their Event Calculus definitions. RTEC_{∘}, however, cannot handle every possible set of Event Calculus definitions for composite activities, limiting the range of CER applications supported by RTEC_{∘}. We propose RTEC_{fl}, an extension of RTEC_{∘} that supports arbitrary composite activity specifications in the Event Calculus. We present the syntax, semantics, reasoning algorithms and time complexity of RTEC_{fl}. Our analysis demonstrates that RTEC_{fl} extends the scope of RTEC_{∘}, supporting every possible set of Event Calculus definitions for composite activities, while maintaining the high reasoning efficiency of RTEC_{∘}.

Cite as

Periklis Mantenoglou and Alexander Artikis. Extending the Range of Temporal Specifications of the Run-Time Event Calculus. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mantenoglou_et_al:LIPIcs.TIME.2024.6,
  author =	{Mantenoglou, Periklis and Artikis, Alexander},
  title =	{{Extending the Range of Temporal Specifications of the Run-Time Event Calculus}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.6},
  URN =		{urn:nbn:de:0030-drops-212135},
  doi =		{10.4230/LIPIcs.TIME.2024.6},
  annote =	{Keywords: Event Calculus, temporal pattern matching, composite event recognition}
}
Document
Complete Volume
LIPIcs, Volume 278, TIME 2023, Complete Volume

Authors: Alexander Artikis, Florian Bruse, and Luke Hunsberger

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
LIPIcs, Volume 278, TIME 2023, Complete Volume

Cite as

30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 1-254, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{artikis_et_al:LIPIcs.TIME.2023,
  title =	{{LIPIcs, Volume 278, TIME 2023, Complete Volume}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{1--254},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023},
  URN =		{urn:nbn:de:0030-drops-190890},
  doi =		{10.4230/LIPIcs.TIME.2023},
  annote =	{Keywords: LIPIcs, Volume 278, TIME 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Alexander Artikis, Florian Bruse, and Luke Hunsberger

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{artikis_et_al:LIPIcs.TIME.2023.0,
  author =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{0:i--0:xiv},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.0},
  URN =		{urn:nbn:de:0030-drops-190907},
  doi =		{10.4230/LIPIcs.TIME.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Complete Volume
LIPIcs, Volume 247, TIME 2022, Complete Volume

Authors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta

Published in: LIPIcs, Volume 247, 29th International Symposium on Temporal Representation and Reasoning (TIME 2022)


Abstract
LIPIcs, Volume 247, TIME 2022, Complete Volume

Cite as

29th International Symposium on Temporal Representation and Reasoning (TIME 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 247, pp. 1-222, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{artikis_et_al:LIPIcs.TIME.2022,
  title =	{{LIPIcs, Volume 247, TIME 2022, Complete Volume}},
  booktitle =	{29th International Symposium on Temporal Representation and Reasoning (TIME 2022)},
  pages =	{1--222},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-262-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{247},
  editor =	{Artikis, Alexander and Posenato, Roberto and Tonetta, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2022},
  URN =		{urn:nbn:de:0030-drops-172469},
  doi =		{10.4230/LIPIcs.TIME.2022},
  annote =	{Keywords: LIPIcs, Volume 247, TIME 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta

Published in: LIPIcs, Volume 247, 29th International Symposium on Temporal Representation and Reasoning (TIME 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

29th International Symposium on Temporal Representation and Reasoning (TIME 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 247, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{artikis_et_al:LIPIcs.TIME.2022.0,
  author =	{Artikis, Alexander and Posenato, Roberto and Tonetta, Stefano},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{29th International Symposium on Temporal Representation and Reasoning (TIME 2022)},
  pages =	{0:i--0:xiv},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-262-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{247},
  editor =	{Artikis, Alexander and Posenato, Roberto and Tonetta, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2022.0},
  URN =		{urn:nbn:de:0030-drops-172473},
  doi =		{10.4230/LIPIcs.TIME.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Foundations of Composite Event Recognition (Dagstuhl Seminar 20071)

Authors: Alexander Artikis, Thomas Eiter, Alessandro Margara, and Stijn Vansummeren

Published in: Dagstuhl Reports, Volume 10, Issue 2 (2020)


Abstract
Composite Event Recognition (CER) refers to the activity of detecting patterns in streams of continuously arriving "event" data over, possibly geographically, distributed sources. CER is key in Big Data applications that require the processing of such event streams to obtain timely insights and to implement reactive and proactive measures. Examples include the recognition of emerging stories and trends on the Social Web, traffic and transport incidents in smart cities, and epidemic spread. Numerous CER languages have been proposed in the literature. While these systems have a common goal, they differ in their data models, pattern languages and processing mechanisms, resulting in heterogeneous implementations with fundamentally different capabilities. Moreover, we lack a common understanding of the trade-offs between expressiveness and complexity, and a theory for comparing the fundamental capabilities of CER systems. As such, CER frameworks are difficult to understand, extend and generalise. It is unclear which of the proposed approaches better meets the requirements of a given application. Furthermore, the lack of foundations makes it hard to leverage established results - from automata theory, temporal logics, etc - thus hindering scientific and technological progress in CER. The objective of the seminar was to bring together researchers and practitioners working in Databases, Distributed Systems, Automata Theory, Logic and Stream Reasoning; disseminate the recent foundational results across these fields; establish new research collaborations among these fields; thereby start making progress towards formulating such foundations.

Cite as

Alexander Artikis, Thomas Eiter, Alessandro Margara, and Stijn Vansummeren. Foundations of Composite Event Recognition (Dagstuhl Seminar 20071). In Dagstuhl Reports, Volume 10, Issue 2, pp. 19-49, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{artikis_et_al:DagRep.10.2.19,
  author =	{Artikis, Alexander and Eiter, Thomas and Margara, Alessandro and Vansummeren, Stijn},
  title =	{{Foundations of Composite Event Recognition (Dagstuhl Seminar 20071)}},
  pages =	{19--49},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2020},
  volume =	{10},
  number =	{2},
  editor =	{Artikis, Alexander and Eiter, Thomas and Margara, Alessandro and Vansummeren, Stijn},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.10.2.19},
  URN =		{urn:nbn:de:0030-drops-130587},
  doi =		{10.4230/DagRep.10.2.19},
  annote =	{Keywords: complex event processing, event algebra, pattern matching, stream reasoning, temporal reasoning}
}
Document
A Stream Reasoning System for Maritime Monitoring

Authors: Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, Ioannis Kontopoulos, and George A. Vouros

Published in: LIPIcs, Volume 120, 25th International Symposium on Temporal Representation and Reasoning (TIME 2018)


Abstract
We present a stream reasoning system for monitoring vessel activity in large geographical areas. The system ingests a compressed vessel position stream, and performs online spatio-temporal link discovery to calculate proximity relations between vessels, and topological relations between vessel and static areas. Capitalizing on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate the effects of the highly efficient spatio-temporal link discovery on performance.

Cite as

Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, Ioannis Kontopoulos, and George A. Vouros. A Stream Reasoning System for Maritime Monitoring. In 25th International Symposium on Temporal Representation and Reasoning (TIME 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 120, pp. 20:1-20:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{santipantakis_et_al:LIPIcs.TIME.2018.20,
  author =	{Santipantakis, Georgios M. and Vlachou, Akrivi and Doulkeridis, Christos and Artikis, Alexander and Kontopoulos, Ioannis and Vouros, George A.},
  title =	{{A Stream Reasoning System for Maritime Monitoring}},
  booktitle =	{25th International Symposium on Temporal Representation and Reasoning (TIME 2018)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-089-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{120},
  editor =	{Alechina, Natasha and N{\o}rv\r{a}g, Kjetil and Penczek, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2018.20},
  URN =		{urn:nbn:de:0030-drops-97858},
  doi =		{10.4230/LIPIcs.TIME.2018.20},
  annote =	{Keywords: event pattern matching, Event Calculus}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail