Search Results

Documents authored by Bhattiprolu, Vijay V. S. P.


Found 2 Possible Name Variants:

Bhattiprolu, Vijay V. S. P.

Document
Separating a Voronoi Diagram via Local Search

Authors: Vijay V. S. P. Bhattiprolu and Sariel Har-Peled

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
Given a set P of n points in R^d , we show how to insert a set Z of O(n^(1-1/d)) additional points, such that P can be broken into two sets P1 and P2 , of roughly equal size, such that in the Voronoi diagram V(P u Z), the cells of P1 do not touch the cells of P2; that is, Z separates P1 from P2 in the Voronoi diagram (and also in the dual Delaunay triangulation). In addition, given such a partition (P1,P2) of P , we present an approximation algorithm to compute a minimum size separator realizing this partition. We also present a simple local search algorithm that is a PTAS for approximating the optimal Voronoi partition.

Cite as

Vijay V. S. P. Bhattiprolu and Sariel Har-Peled. Separating a Voronoi Diagram via Local Search. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bhattiprolu_et_al:LIPIcs.SoCG.2016.18,
  author =	{Bhattiprolu, Vijay V. S. P. and Har-Peled, Sariel},
  title =	{{Separating a Voronoi Diagram via Local Search}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.18},
  URN =		{urn:nbn:de:0030-drops-59107},
  doi =		{10.4230/LIPIcs.SoCG.2016.18},
  annote =	{Keywords: Separators, Local search, Approximation, Voronoi diagrams, Delaunay triangulation, Meshing, Geometric hitting set}
}
Document
Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

Authors: Vijay V. S. P. Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
A hypergraph is said to be X-colorable if its vertices can be colored with X colors so that no hyperedge is monochromatic. 2-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 2-colorable k-uniform hypergraph, it is NP-hard to find a 2-coloring miscoloring fewer than a fraction 2^(-k+1) of hyperedges (which is trivially achieved by a random 2-coloring), and the best algorithms to color the hypergraph properly require about n^(1-1/k) colors, approaching the trivial bound of n as k increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 2-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 2-colorability: (A) Low-discrepancy: If the hypergraph has a 2-coloring of discrepancy l << sqrt(k), we give an algorithm to color the hypergraph with about n^(O(l^2/k)) colors. However, for the maximization version, we prove NP-hardness of finding a 2-coloring miscoloring a smaller than 2^(-O(k)) (resp. k^(-O(k))) fraction of the hyperedges when l = O(log k) (resp. l=2). Assuming the Unique Games conjecture, we improve the latter hardness factor to 2^(-O(k)) for almost discrepancy-1 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (k-l)-coloring such that each hyperedge is polychromatic with all these colors (this is stronger than a (l+1)-discrepancy 2-coloring), we give a 2-coloring algorithm that miscolors at most k^(-Omega(k)) of the hyperedges when l << sqrt(k), and complement this with a matching Unique Games hardness result showing that when l = sqrt(k), it is hard to even beat the 2^(-k+1) bound achieved by a random coloring. (C) Strong Colorability: We obtain similar (stronger) Min- and Max-2-Coloring algorithmic results in the case of (k+l)-strong colorability.

Cite as

Vijay V. S. P. Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Approximate Hypergraph Coloring under Low-discrepancy and Related Promises. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 152-174, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bhattiprolu_et_al:LIPIcs.APPROX-RANDOM.2015.152,
  author =	{Bhattiprolu, Vijay V. S. P. and Guruswami, Venkatesan and Lee, Euiwoong},
  title =	{{Approximate Hypergraph Coloring under Low-discrepancy and Related Promises}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{152--174},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.152},
  URN =		{urn:nbn:de:0030-drops-53011},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.152},
  annote =	{Keywords: Hypergraph Coloring, Discrepancy, Rainbow Coloring, Stong Coloring, Algorithms, Semidefinite Programming, Hardness of Approximation}
}

Bhattiprolu, Vijay

Document
Separating the NP-Hardness of the Grothendieck Problem from the Little-Grothendieck Problem

Authors: Vijay Bhattiprolu, Euiwoong Lee, and Madhur Tulsiani

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Grothendieck’s inequality [Grothendieck, 1953] states that there is an absolute constant K > 1 such that for any n× n matrix A, ‖A‖_{∞→1} := max_{s,t ∈ {± 1}ⁿ}∑_{i,j} A[i,j]⋅s(i)⋅t(j) ≥ 1/K ⋅ max_{u_i,v_j ∈ S^{n-1}}∑_{i,j} A[i,j]⋅⟨u_i,v_j⟩. In addition to having a tremendous impact on Banach space theory, this inequality has found applications in several unrelated fields like quantum information, regularity partitioning, communication complexity, etc. Let K_G (known as Grothendieck’s constant) denote the smallest constant K above. Grothendieck’s inequality implies that a natural semidefinite programming relaxation obtains a constant factor approximation to ‖A‖_{∞ → 1}. The exact value of K_G is yet unknown with the best lower bound (1.67…) being due to Reeds and the best upper bound (1.78…) being due to Braverman, Makarychev, Makarychev and Naor [Braverman et al., 2013]. In contrast, the little Grothendieck inequality states that under the assumption that A is PSD the constant K above can be improved to π/2 and moreover this is tight. The inapproximability of ‖A‖_{∞ → 1} has been studied in several papers culminating in a tight UGC-based hardness result due to Raghavendra and Steurer (remarkably they achieve this without knowing the value of K_G). Briet, Regev and Saket [Briët et al., 2015] proved tight NP-hardness of approximating the little Grothendieck problem within π/2, based on a framework by Guruswami, Raghavendra, Saket and Wu [Guruswami et al., 2016] for bypassing UGC for geometric problems. This also remained the best known NP-hardness for the general Grothendieck problem due to the nature of the Guruswami et al. framework, which utilized a projection operator onto the degree-1 Fourier coefficients of long code encodings, which naturally yielded a PSD matrix A. We show how to extend the above framework to go beyond the degree-1 Fourier coefficients, using the global structure of optimal solutions to the Grothendieck problem. As a result, we obtain a separation between the NP-hardness results for the two problems, obtaining an inapproximability result for the Grothendieck problem, of a factor π/2 + ε₀ for a fixed constant ε₀ > 0.

Cite as

Vijay Bhattiprolu, Euiwoong Lee, and Madhur Tulsiani. Separating the NP-Hardness of the Grothendieck Problem from the Little-Grothendieck Problem. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bhattiprolu_et_al:LIPIcs.ITCS.2022.22,
  author =	{Bhattiprolu, Vijay and Lee, Euiwoong and Tulsiani, Madhur},
  title =	{{Separating the NP-Hardness of the Grothendieck Problem from the Little-Grothendieck Problem}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.22},
  URN =		{urn:nbn:de:0030-drops-156186},
  doi =		{10.4230/LIPIcs.ITCS.2022.22},
  annote =	{Keywords: Grothendieck’s Inequality, Hardness of Approximation, Semidefinite Programming, Optimization}
}
Document
Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere

Authors: Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
For an n-variate order-d tensor A, define A_{max} := sup_{||x||_2 = 1} <A,x^(otimes d)>, to be the maximum value taken by the tensor on the unit sphere. It is known that for a random tensor with i.i.d. +1/-1 entries, A_{max} <= sqrt(n.d.log(d)) w.h.p. We study the problem of efficiently certifying upper bounds on A_{max} via the natural relaxation from the Sum of Squares (SoS) hierarchy. Our results include: * When A is a random order-q tensor, we prove that q levels of SoS certifies an upper bound B on A_{max} that satisfies B <= A_{max} * (n/q^(1-o(1)))^(q/4-1/2) w.h.p. Our upper bound improves a result of Montanari and Richard (NIPS 2014) when q is large. * We show the above bound is the best possible up to lower order terms, namely the optimum of the level-q SoS relaxation is at least A_{max} * (n/q^(1+o(1)))^(q/4-1/2). * When A is a random order-d tensor, we prove that q levels of SoS certifies an upper bound B on A_{max} that satisfies B <= A_{max} * (n*polylog/q)^(d/4 - 1/2) w.h.p. For growing q, this improves upon the bound certified by constant levels of SoS. This answers in part, a question posed by Hopkins, Shi, and Steurer (COLT 2015), who tightly characterized constant levels of SoS.

Cite as

Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bhattiprolu_et_al:LIPIcs.APPROX-RANDOM.2017.31,
  author =	{Bhattiprolu, Vijay and Guruswami, Venkatesan and Lee, Euiwoong},
  title =	{{Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.31},
  URN =		{urn:nbn:de:0030-drops-75808},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.31},
  annote =	{Keywords: Sum-of-Squares, Optimization over Sphere, Random Polynomials}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail