Search Results

Documents authored by Cao, Nairen


Document
Min-Max Correlation Clustering via Neighborhood Similarity

Authors: Nairen Cao, Steven Roche, and Hsin-Hao Su

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an efficient algorithm for the min-max correlation clustering problem. The input is a complete graph where edges are labeled as either positive (+) or negative (-), and the objective is to find a clustering that minimizes the 𝓁_∞-norm of the disagreement vector over all vertices. We address this problem with an efficient (3 + ε)-approximation algorithm that runs in nearly linear time, Õ(|E^+|), where |E^+| denotes the number of positive edges. This improves upon the previous best-known approximation guarantee of 4 by Heidrich, Irmai, and Andres [Heidrich et al., 2024], whose algorithm runs in O(|V|² + |V| D²) time, where |V| is the number of nodes and D is the maximum degree in the graph (V,E^+). Furthermore, we extend our algorithm to the massively parallel computation (MPC) model and the semi-streaming model. In the MPC model, our algorithm runs on machines with memory sublinear in the number of nodes and takes O(1) rounds. In the streaming model, our algorithm requires only Õ(|V|) space, where |V| is the number of vertices in the graph. Our algorithms are purely combinatorial. They are based on a novel structural observation about the optimal min-max instance, which enables the construction of a (3 + ε)-approximation algorithm using O(|E^+|) neighborhood similarity queries. By leveraging random projection, we further show these queries can be computed in nearly linear time.

Cite as

Nairen Cao, Steven Roche, and Hsin-Hao Su. Min-Max Correlation Clustering via Neighborhood Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 41:1-41:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ESA.2025.41,
  author =	{Cao, Nairen and Roche, Steven and Su, Hsin-Hao},
  title =	{{Min-Max Correlation Clustering via Neighborhood Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{41:1--41:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.41},
  URN =		{urn:nbn:de:0030-drops-245098},
  doi =		{10.4230/LIPIcs.ESA.2025.41},
  annote =	{Keywords: Min Max Correlation Clustering, Approximate algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Simultaneously Approximating All Norms for Massively Parallel Correlation Clustering

Authors: Nairen Cao, Shi Li, and Jia Ye

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We revisit the simultaneous approximation model for the correlation clustering problem introduced by Davies, Moseley, and Newman [Davies et al., 2024]. The objective is to find a clustering that minimizes given norms of the disagreement vector over all vertices. We present an efficient algorithm that produces a clustering that is simultaneously a 63.3-approximation for all monotone symmetric norms. This significantly improves upon the previous approximation ratio of 6348 due to Davies, Moseley, and Newman [Davies et al., 2024], which works only for 𝓁_p-norms. To achieve this result, we first reduce the problem to approximating all top-k norms simultaneously, using the connection between monotone symmetric norms and top-k norms established by Chakrabarty and Swamy [Chakrabarty and Swamy, 2019]. Then we develop a novel procedure that constructs a 12.66-approximate fractional clustering for all top-k norms. Our 63.3-approximation ratio is obtained by combining this with the 5-approximate rounding algorithm by Kalhan, Makarychev, and Zhou [Kalhan et al., 2019]. We then demonstrate that with a loss of ε in the approximation ratio, the algorithm can be adapted to run in nearly linear time and in the MPC (massively parallel computation) model with poly-logarithmic number of rounds. By allowing a further trade-off in the approximation ratio to (359+ε), the number of MPC rounds can be reduced to a constant.

Cite as

Nairen Cao, Shi Li, and Jia Ye. Simultaneously Approximating All Norms for Massively Parallel Correlation Clustering. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ICALP.2025.40,
  author =	{Cao, Nairen and Li, Shi and Ye, Jia},
  title =	{{Simultaneously Approximating All Norms for Massively Parallel Correlation Clustering}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.40},
  URN =		{urn:nbn:de:0030-drops-234171},
  doi =		{10.4230/LIPIcs.ICALP.2025.40},
  annote =	{Keywords: Correlation Clustering, All-Norms, Approximation Algorithm, Massively Parallel Algorithm}
}
Document
Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights

Authors: Vikrant Ashvinkumar, Aaron Bernstein, Nairen Cao, Christoph Grunau, Bernhard Haeupler, Yonggang Jiang, Danupon Nanongkai, and Hsin-Hao Su

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths when edges can have negative integer weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in all these settings to n^{o(1)} calls to any SSSP algorithm that works on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source. More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with - W_{SSSP}(m,n)n^{o(1)} work and S_{SSSP}(m,n)n^{o(1)} span, given access to a non-negative-weight SSSP algorithm with W_{SSSP}(m,n) work and S_{SSSP}(m,n) span in the parallel model, and - T_{SSSP}(n,D)n^{o(1)} rounds, given access to a non-negative-weight SSSP algorithm that takes T_{SSSP}(n,D) rounds in CONGEST, and - Q_{SSSP}(m,n)n^{o(1)} quantum edge queries, given access to a non-negative-weight SSSP algorithm that takes Q_{SSSP}(m,n) queries in the quantum edge query model. This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [Bernstein et al., 2022], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms for negative-weight SSSP with - m^{1+o(1)} work and n^{1/2+o(1)} span in the parallel model, and - (n^{2/5}D^{2/5} + √n + D)n^{o(1)} rounds in CONGEST, and - m^{1/2}n^{1/2+o(1)} quantum queries to the adjacency list or n^{1.5+o(1)} quantum queries to the adjacency matrix. Up to a n^{o(1)} factor, the parallel and distributed results match the current best upper bounds for reachability [Jambulapati et al., 2019; Cao et al., 2021]. Consequently, any improvement to negative-weight SSSP in these models beyond the n^{o(1)} factor necessitates an improvement to the current best bounds for reachability. The quantum result matches the lower bound up to an n^{o(1)} factor [Aija Berzina et al., 2004]. Our main technical contribution is an efficient reduction from computing a low-diameter decomposition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models, and been rather unstudied in quantum models. The directed LDD is a crucial step of the sequential algorithm in [Bernstein et al., 2022], and we think that its applications to other problems in parallel and distributed models are far from being exhausted. Other ingredients of our results include altering the recursion structure of the scaling algorithm in [Bernstein et al., 2022] to surmount difficulties that arise in these models, and also an efficient reduction from computing strongly connected components to computations of SSSP with a virtual source in CONGEST. The latter result answers a question posed in [Bernstein and Nanongkai, 2019] in the negative.

Cite as

Vikrant Ashvinkumar, Aaron Bernstein, Nairen Cao, Christoph Grunau, Bernhard Haeupler, Yonggang Jiang, Danupon Nanongkai, and Hsin-Hao Su. Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ashvinkumar_et_al:LIPIcs.ESA.2024.13,
  author =	{Ashvinkumar, Vikrant and Bernstein, Aaron and Cao, Nairen and Grunau, Christoph and Haeupler, Bernhard and Jiang, Yonggang and Nanongkai, Danupon and Su, Hsin-Hao},
  title =	{{Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{13:1--13:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.13},
  URN =		{urn:nbn:de:0030-drops-210849},
  doi =		{10.4230/LIPIcs.ESA.2024.13},
  annote =	{Keywords: Parallel algorithm, distributed algorithm, shortest paths}
}
Document
Nested Active-Time Scheduling

Authors: Nairen Cao, Jeremy T. Fineman, Shi Li, Julián Mestre, Katina Russell, and Seeun William Umboh

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
The active-time scheduling problem considers the problem of scheduling preemptible jobs with windows (release times and deadlines) on a parallel machine that can schedule up to g jobs during each timestep. The goal in the active-time problem is to minimize the number of active steps, i.e., timesteps in which at least one job is scheduled. In this way, the active time models parallel scheduling when there is a fixed cost for turning the machine on at each discrete step. This paper presents a 9/5-approximation algorithm for a special case of the active-time scheduling problem in which job windows are laminar (nested). This result improves on the previous best 2-approximation for the general case.

Cite as

Nairen Cao, Jeremy T. Fineman, Shi Li, Julián Mestre, Katina Russell, and Seeun William Umboh. Nested Active-Time Scheduling. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ISAAC.2022.36,
  author =	{Cao, Nairen and Fineman, Jeremy T. and Li, Shi and Mestre, Juli\'{a}n and Russell, Katina and Umboh, Seeun William},
  title =	{{Nested Active-Time Scheduling}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.36},
  URN =		{urn:nbn:de:0030-drops-173214},
  doi =		{10.4230/LIPIcs.ISAAC.2022.36},
  annote =	{Keywords: Scheduling algorithms, Active time, Approximation algorithm}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail