Search Results

Documents authored by Chekan, Vera


Document
Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth

Authors: Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms which achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. More precisely, we prove that on n-vertex graphs equipped with a tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels, - Independent Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using 𝒪(dk²log n) space; - Max Cut can be solved in time n^𝒪(dk) using 𝒪(dk log n) space; and - Dominating Set can be solved in time 2^𝒪(dk) ⋅ n^𝒪(1) using n^𝒪(1) space via a randomized algorithm. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence, which shows that at least in the case of Independent Set the exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep the space complexity polynomial.

Cite as

Benjamin Bergougnoux, Vera Chekan, Robert Ganian, Mamadou Moustapha Kanté, Matthias Mnich, Sang-il Oum, Michał Pilipczuk, and Erik Jan van Leeuwen. Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergougnoux_et_al:LIPIcs.ESA.2023.18,
  author =	{Bergougnoux, Benjamin and Chekan, Vera and Ganian, Robert and Kant\'{e}, Mamadou Moustapha and Mnich, Matthias and Oum, Sang-il and Pilipczuk, Micha{\l} and van Leeuwen, Erik Jan},
  title =	{{Space-Efficient Parameterized Algorithms on Graphs of Low Shrubdepth}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.18},
  URN =		{urn:nbn:de:0030-drops-186710},
  doi =		{10.4230/LIPIcs.ESA.2023.18},
  annote =	{Keywords: Parameterized complexity, shrubdepth, space complexity, algebraic methods}
}
Document
Tight Algorithmic Applications of Clique-Width Generalizations

Authors: Vera Chekan and Stefan Kratsch

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In this work, we study two natural generalizations of clique-width introduced by Martin Fürer. Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. Fürer has shown that both parameters are upper-bounded by treewidth thus making them more appealing from an algorithmic perspective than clique-width and asked for applications of these parameters for problem solving. First, we determine the relation between these two parameters by showing that mcw ≤ fw + 1. Then we show that when parameterized by multi-clique-width, many problems (e.g., Connected Dominating Set) admit algorithms with the same running time as for clique-width despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian Cycle) we show an analogous result for fusion-width: For this we present an alternative view on fusion-width by introducing so-called glue-expressions which might be interesting on their own. All algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.

Cite as

Vera Chekan and Stefan Kratsch. Tight Algorithmic Applications of Clique-Width Generalizations. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chekan_et_al:LIPIcs.MFCS.2023.35,
  author =	{Chekan, Vera and Kratsch, Stefan},
  title =	{{Tight Algorithmic Applications of Clique-Width Generalizations}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{35:1--35:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.35},
  URN =		{urn:nbn:de:0030-drops-185699},
  doi =		{10.4230/LIPIcs.MFCS.2023.35},
  annote =	{Keywords: Parameterized complexity, connectivity problems, clique-width}
}
Document
Tight Bounds for Connectivity Problems Parameterized by Cutwidth

Authors: Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
In this work we start the investigation of tight complexity bounds for connectivity problems parameterized by cutwidth assuming the Strong Exponential-Time Hypothesis (SETH). Van Geffen et al. [Bas A. M. van Geffen et al., 2020] posed this question for Odd Cycle Transversal and Feedback Vertex Set. We answer it for these two and four further problems, namely Connected Vertex Cover, Connected Dominating Set, Steiner Tree, and Connected Odd Cycle Transversal. For the latter two problems it sufficed to prove lower bounds that match the running time inherited from parameterization by treewidth; for the others we provide faster algorithms than relative to treewidth and prove matching lower bounds. For upper bounds we first extend the idea of Groenland et al. [Carla Groenland et al., 2022] to solve what we call coloring-like problems. Such problems are defined by a symmetric matrix M over 𝔽₂ indexed by a set of colors. The goal is to count the number (modulo some prime p) of colorings of a graph such that M has a 1-entry if indexed by the colors of the end-points of any edge. We show that this problem can be solved faster if M has small rank over 𝔽_p. We apply this result to get our upper bounds for CVC and CDS. The upper bounds for OCT and FVS use a subdivision trick to get below the bounds that matrix rank would yield.

Cite as

Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. Tight Bounds for Connectivity Problems Parameterized by Cutwidth. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bojikian_et_al:LIPIcs.STACS.2023.14,
  author =	{Bojikian, Narek and Chekan, Vera and Hegerfeld, Falko and Kratsch, Stefan},
  title =	{{Tight Bounds for Connectivity Problems Parameterized by Cutwidth}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.14},
  URN =		{urn:nbn:de:0030-drops-176667},
  doi =		{10.4230/LIPIcs.STACS.2023.14},
  annote =	{Keywords: Parameterized complexity, connectivity problems, cutwidth}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail