Search Results

Documents authored by Cheung, Tsun-Ming


Document
A Lower Bound on the Trace Norm of Boolean Matrices and Its Applications

Authors: Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, Aleksandar Nikolov, Toniann Pitassi, and Morgan Shirley

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We present a simple method based on a variant of Hölder’s inequality to lower-bound the trace norm of Boolean matrices. As the main result, we obtain an exponential separation between the randomized decision tree depth and the spectral norm (i.e. the Fourier L₁-norm) of a Boolean function. This answers an open question of Cheung, Hatami, Hosseini and Shirley (CCC 2023). As immediate consequences, we obtain the following results. - We give an exponential separation between the logarithm of the randomized and the deterministic parity decision tree size. This is in sharp contrast with the standard binary decision tree setting where the logarithms of randomized and deterministic decision tree size are essentially polynomially related, as shown recently by Chattopadhyay, Dahiya, Mande, Radhakrishnan, and Sanyal (STOC 2023). - We give an exponential separation between the approximate and the exact spectral norm for Boolean functions. - We give an exponential separation for XOR functions between the deterministic communication complexity with oracle access to Equality function (D^EQ) and randomized communication complexity. Previously, such a separation was known for general Boolean matrices by Chattopadhyay, Lovett, and Vinyals (CCC 2019) using the Integer Inner Product (IIP) function. - Finally, our method gives an elementary and short proof for the mentioned exponential D^EQ lower bound of Chattopadhyay, Lovett, and Vinyals for Integer Inner Product (IIP).

Cite as

Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, Aleksandar Nikolov, Toniann Pitassi, and Morgan Shirley. A Lower Bound on the Trace Norm of Boolean Matrices and Its Applications. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 37:1-37:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cheung_et_al:LIPIcs.ITCS.2025.37,
  author =	{Cheung, Tsun-Ming and Hatami, Hamed and Hosseini, Kaave and Nikolov, Aleksandar and Pitassi, Toniann and Shirley, Morgan},
  title =	{{A Lower Bound on the Trace Norm of Boolean Matrices and Its Applications}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{37:1--37:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.37},
  URN =		{urn:nbn:de:0030-drops-226654},
  doi =		{10.4230/LIPIcs.ITCS.2025.37},
  annote =	{Keywords: Boolean function complexity, parity decision trees, randomized communication complexity}
}
Document
Communication Complexity and Discrepancy of Halfplanes

Authors: Manasseh Ahmed, Tsun-Ming Cheung, Hamed Hatami, and Kusha Sareen

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
We study the discrepancy of the following communication problem. Alice receives a halfplane, and Bob receives a point in the plane, and their goal is to determine whether Bob’s point belongs to Alice’s halfplane. This communication task corresponds to determining whether x₁y₁+y₂ ≥ x₂, where the first player knows (x₁,x₂) and the second player knows (y₁,y₂). Denoting n = m³, we show that when the inputs are chosen from [m] × [m²], the communication discrepancy of the above problem is O(n^{-1/6} log^{3/2} n). On the other hand, through the connections to the notion of hereditary discrepancy by Matoušek, Nikolov, and Tawler (IMRN 2020) and a classical result of Matoušek (Discrete Comput. Geom. 1995), we show that the communication discrepancy of every set of n points and n halfplanes is at least Ω(n^{-1/4} log^{-1} n).

Cite as

Manasseh Ahmed, Tsun-Ming Cheung, Hamed Hatami, and Kusha Sareen. Communication Complexity and Discrepancy of Halfplanes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ahmed_et_al:LIPIcs.SoCG.2024.5,
  author =	{Ahmed, Manasseh and Cheung, Tsun-Ming and Hatami, Hamed and Sareen, Kusha},
  title =	{{Communication Complexity and Discrepancy of Halfplanes}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.5},
  URN =		{urn:nbn:de:0030-drops-199504},
  doi =		{10.4230/LIPIcs.SoCG.2024.5},
  annote =	{Keywords: Randomized communication complexity, Discrepancy theory, factorization norm}
}
Document
Separation of the Factorization Norm and Randomized Communication Complexity

Authors: Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
In an influential paper, Linial and Shraibman (STOC '07) introduced the factorization norm as a powerful tool for proving lower bounds against randomized and quantum communication complexities. They showed that the logarithm of the approximate γ₂-factorization norm is a lower bound for these parameters and asked whether a stronger lower bound that replaces approximate γ₂ norm with the γ₂ norm holds. We answer the question of Linial and Shraibman in the negative by exhibiting a 2ⁿ×2ⁿ Boolean matrix with γ₂ norm 2^Ω(n) and randomized communication complexity O(log n). As a corollary, we recover the recent result of Chattopadhyay, Lovett, and Vinyals (CCC '19) that deterministic protocols with access to an Equality oracle are exponentially weaker than (one-sided error) randomized protocols. In fact, as a stronger consequence, our result implies an exponential separation between the power of unambiguous nondeterministic protocols with access to Equality oracle and (one-sided error) randomized protocols, which answers a question of Pitassi, Shirley, and Shraibman (ITSC '23). Our result also implies a conjecture of Sherif (Ph.D. thesis) that the γ₂ norm of the Integer Inner Product function (IIP) in dimension 3 or higher is exponential in its input size.

Cite as

Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley. Separation of the Factorization Norm and Randomized Communication Complexity. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cheung_et_al:LIPIcs.CCC.2023.1,
  author =	{Cheung, Tsun-Ming and Hatami, Hamed and Hosseini, Kaave and Shirley, Morgan},
  title =	{{Separation of the Factorization Norm and Randomized Communication Complexity}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.1},
  URN =		{urn:nbn:de:0030-drops-182714},
  doi =		{10.4230/LIPIcs.CCC.2023.1},
  annote =	{Keywords: Factorization norms, randomized communication complexity}
}
Document
Track A: Algorithms, Complexity and Games
Online Learning and Disambiguations of Partial Concept Classes

Authors: Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In a recent article, Alon, Hanneke, Holzman, and Moran (FOCS '21) introduced a unifying framework to study the learnability of classes of partial concepts. One of the central questions studied in their work is whether the learnability of a partial concept class is always inherited from the learnability of some "extension" of it to a total concept class. They showed this is not the case for PAC learning but left the problem open for the stronger notion of online learnability. We resolve this problem by constructing a class of partial concepts that is online learnable, but no extension of it to a class of total concepts is online learnable (or even PAC learnable).

Cite as

Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini. Online Learning and Disambiguations of Partial Concept Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 42:1-42:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cheung_et_al:LIPIcs.ICALP.2023.42,
  author =	{Cheung, Tsun-Ming and Hatami, Hamed and Hatami, Pooya and Hosseini, Kaave},
  title =	{{Online Learning and Disambiguations of Partial Concept Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{42:1--42:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.42},
  URN =		{urn:nbn:de:0030-drops-180946},
  doi =		{10.4230/LIPIcs.ICALP.2023.42},
  annote =	{Keywords: Online learning, Littlestone dimension, VC dimension, partial concept class, clique vs independent set, Alon-Saks-Seymour conjecture, Standard Optimal Algorithm, PAC learning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail