Search Results

Documents authored by Claudet, Nathan


Document
Local Equivalence of Stabilizer States: A Graphical Characterisation

Authors: Nathan Claudet and Simon Perdrix

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Stabilizer states form a ubiquitous family of quantum states that can be graphically represented through the graph state formalism. A fundamental property of graph states is that applying a local complementation - a well-known and extensively studied graph transformation - results in a graph that represents the same entanglement as the original. In other words, the corresponding graph states are LU-equivalent. This property served as the cornerstone for capturing non-trivial quantum properties in a simple graphical manner, in the study of quantum entanglement but also for developing protocols and models based on graph states and stabilizer states, such as measurement-based quantum computing, secret sharing, error correction, entanglement distribution... However, local complementation fails short to fully characterise entanglement: there exist pairs of graph states that are LU-equivalent but cannot be transformed one into the other using local complementations. Only few is known about the equivalence of graph states beyond local complementation. We introduce a generalisation of local complementation which graphically characterises the LU-equivalence of graph states. We use this characterisation to show the existence of a strict infinite hierarchy of equivalences of graph states. Our approach is based on minimal local sets, which are subsets of vertices that are known to cover any graph, and to be invariant under local complementation and even LU-equivalence. We use these structures to provide a type to each vertex of a graph, leading to a natural standard form in which the LU-equivalence can be exhibited and captured by means of generalised local complementation.

Cite as

Nathan Claudet and Simon Perdrix. Local Equivalence of Stabilizer States: A Graphical Characterisation. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{claudet_et_al:LIPIcs.STACS.2025.27,
  author =	{Claudet, Nathan and Perdrix, Simon},
  title =	{{Local Equivalence of Stabilizer States: A Graphical Characterisation}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{27:1--27:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.27},
  URN =		{urn:nbn:de:0030-drops-228527},
  doi =		{10.4230/LIPIcs.STACS.2025.27},
  annote =	{Keywords: Quantum computing, Graph theory, Entanglement, Local complementation}
}
Document
Track A: Algorithms, Complexity and Games
Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems

Authors: Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the notion of k-stabilizer universal quantum state, that is, an n-qubit quantum state, such that it is possible to induce any stabilizer state on any k qubits, by using only local operations and classical communications. These states generalize the notion of k-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and k-vertex-minor universal graphs. First, we demonstrate the existence of k-stabilizer universal graph states that are optimal in size with n = Θ(k²) qubits. We also provide parameters for which a random graph state on Θ(k²) qubits is k-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of k-stabilizer universal graph states on n = O(k⁴) qubits. Both rely upon the incidence graph of the projective plane over a finite field 𝔽_q. This provides a major improvement over the previously known explicit construction of k-pairable graph states with n = O(2^{3k}), bringing forth a new and potentially powerful family of multipartite quantum resources.

Cite as

Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé. Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cautres_et_al:LIPIcs.ICALP.2024.36,
  author =	{Cautr\`{e}s, Maxime and Claudet, Nathan and Mhalla, Mehdi and Perdrix, Simon and Savin, Valentin and Thomass\'{e}, St\'{e}phan},
  title =	{{Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.36},
  URN =		{urn:nbn:de:0030-drops-201796},
  doi =		{10.4230/LIPIcs.ICALP.2024.36},
  annote =	{Keywords: Quantum networks, graph states, vertex-minors, k-pairability}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail