Search Results

Documents authored by Combi, Carlo


Document
Agile Controllability of Simple Temporal Networks with Uncertainty and Oracles

Authors: Johann Eder, Roberto Posenato, Carlo Combi, Marco Franceschetti, and Franziska S. Hollauf

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Simple temporal networks with uncertainty (STNUs) have achieved wide attention and are the basis of many applications requiring the representation of temporal constraints and checking whether they are conflicting. Dynamic controllability is currently the most relaxed notion to check whether a system can be controlled without violating temporal constraints despite uncertainties. However, dynamic controllability assumes that the actual duration of a contingent activity is only known when the end event of this activity takes place. The recently introduced notion of agile controllability considers when this duration is known earlier, leading to a more relaxed notion of temporal feasibility. We extend the definition of STNUs to STNUOs (Simple Temporal Networks with Uncertainty and Oracles) to represent the point in time at which information about a contingent duration is available. We formally define agile controllability as a generalization of dynamic controllability considering the timepoints of information availability. We propose a set of constraint propagation rules for STNUOs leading to an algorithm for checking agile controllability.

Cite as

Johann Eder, Roberto Posenato, Carlo Combi, Marco Franceschetti, and Franziska S. Hollauf. Agile Controllability of Simple Temporal Networks with Uncertainty and Oracles. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 4:1-4:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eder_et_al:LIPIcs.TIME.2024.4,
  author =	{Eder, Johann and Posenato, Roberto and Combi, Carlo and Franceschetti, Marco and Hollauf, Franziska S.},
  title =	{{Agile Controllability of Simple Temporal Networks with Uncertainty and Oracles}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{4:1--4:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.4},
  URN =		{urn:nbn:de:0030-drops-212115},
  doi =		{10.4230/LIPIcs.TIME.2024.4},
  annote =	{Keywords: Temporal constraint networks, contingent durations, agile controllability}
}
Document
Discovering Predictive Dependencies on Multi-Temporal Relations

Authors: Beatrice Amico, Carlo Combi, Romeo Rizzi, and Pietro Sala

Published in: LIPIcs, Volume 278, 30th International Symposium on Temporal Representation and Reasoning (TIME 2023)


Abstract
In this paper, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework and on a multi-temporal relational model. Different features are proposed for the Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and for the Prediction Window (PW), where the predicted event occurs. We then discuss the concept of approximation for such APFDs, introduce two new error measures. We prove that the problem of deriving APFDs is intractable. Moreover, we discuss some preliminary results in deriving APFDs from real clinical data using MIMIC III dataset, related to patients from Intensive Care Units.

Cite as

Beatrice Amico, Carlo Combi, Romeo Rizzi, and Pietro Sala. Discovering Predictive Dependencies on Multi-Temporal Relations. In 30th International Symposium on Temporal Representation and Reasoning (TIME 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 278, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amico_et_al:LIPIcs.TIME.2023.4,
  author =	{Amico, Beatrice and Combi, Carlo and Rizzi, Romeo and Sala, Pietro},
  title =	{{Discovering Predictive Dependencies on Multi-Temporal Relations}},
  booktitle =	{30th International Symposium on Temporal Representation and Reasoning (TIME 2023)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-298-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{278},
  editor =	{Artikis, Alexander and Bruse, Florian and Hunsberger, Luke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2023.4},
  URN =		{urn:nbn:de:0030-drops-190945},
  doi =		{10.4230/LIPIcs.TIME.2023.4},
  annote =	{Keywords: temporal databases, temporal data mining, functional dependencies}
}
Document
Complete Volume
LIPIcs, Volume 206, TIME 2021, Complete Volume

Authors: Carlo Combi, Johann Eder, and Mark Reynolds

Published in: LIPIcs, Volume 206, 28th International Symposium on Temporal Representation and Reasoning (TIME 2021)


Abstract
LIPIcs, Volume 206, TIME 2021, Complete Volume

Cite as

28th International Symposium on Temporal Representation and Reasoning (TIME 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 206, pp. 1-244, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{combi_et_al:LIPIcs.TIME.2021,
  title =	{{LIPIcs, Volume 206, TIME 2021, Complete Volume}},
  booktitle =	{28th International Symposium on Temporal Representation and Reasoning (TIME 2021)},
  pages =	{1--244},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-206-8},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{206},
  editor =	{Combi, Carlo and Eder, Johann and Reynolds, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2021},
  URN =		{urn:nbn:de:0030-drops-147755},
  doi =		{10.4230/LIPIcs.TIME.2021},
  annote =	{Keywords: LIPIcs, Volume 206, TIME 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Carlo Combi, Johann Eder, and Mark Reynolds

Published in: LIPIcs, Volume 206, 28th International Symposium on Temporal Representation and Reasoning (TIME 2021)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

28th International Symposium on Temporal Representation and Reasoning (TIME 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 206, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{combi_et_al:LIPIcs.TIME.2021.0,
  author =	{Combi, Carlo and Eder, Johann and Reynolds, Mark},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{28th International Symposium on Temporal Representation and Reasoning (TIME 2021)},
  pages =	{0:i--0:xiv},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-206-8},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{206},
  editor =	{Combi, Carlo and Eder, Johann and Reynolds, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2021.0},
  URN =		{urn:nbn:de:0030-drops-147761},
  doi =		{10.4230/LIPIcs.TIME.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Customizing BPMN Diagrams Using Timelines

Authors: Carlo Combi, Barbara Oliboni, and Pietro Sala

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
BPMN (Business Process Model and Notation) is widely used standard modeling technique for representing Business Processes by using diagrams, but lacks in some aspects. Representing execution-dependent and time-dependent decisions in BPMN Diagrams may be a daunting challenge [Carlo Combi et al., 2017]. In many cases such constraints are omitted in order to preserve the simplicity and the readability of the process model. However, for purposes such as compliance checking, process mining, and verification, formalizing such constraints could be very useful. In this paper, we propose a novel approach for annotating BPMN Diagrams with Temporal Synchronization Rules borrowed from the timeline-based planning field. We discuss the expressivity of the proposed approach and show that it is able to capture a lot of complex temporally-related constraints without affecting the structure of BPMN diagrams. Finally, we provide a mapping from annotated BPMN diagrams to timeline-based planning problems that allows one to take advantage of the last twenty years of theoretical and practical developments in the field.

Cite as

Carlo Combi, Barbara Oliboni, and Pietro Sala. Customizing BPMN Diagrams Using Timelines. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{combi_et_al:LIPIcs.TIME.2019.5,
  author =	{Combi, Carlo and Oliboni, Barbara and Sala, Pietro},
  title =	{{Customizing BPMN Diagrams Using Timelines}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.5},
  URN =		{urn:nbn:de:0030-drops-113630},
  doi =		{10.4230/LIPIcs.TIME.2019.5},
  annote =	{Keywords: Business Processes, BPMN, Timelines, Temporal Constraints}
}
Document
Hybrid SAT-Based Consistency Checking Algorithms for Simple Temporal Networks with Decisions

Authors: Matteo Zavatteri, Carlo Combi, Romeo Rizzi, and Luca Viganò

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
A Simple Temporal Network (STN) consists of time points modeling temporal events and constraints modeling the minimal and maximal temporal distance between them. A Simple Temporal Network with Decisions (STND) extends an STN by adding decision time points to model temporal plans with decisions. A decision time point is a special kind of time point that once executed allows for deciding a truth value for an associated Boolean proposition. Furthermore, STNDs label time points and constraints by conjunctions of literals saying for which scenarios (i.e., complete truth value assignments to the propositions) they are relevant. Thus, an STND models a family of STNs each obtained as a projection of the initial STND onto a scenario. An STND is consistent if there exists a consistent scenario (i.e., a scenario such that the corresponding STN projection is consistent). Recently, a hybrid SAT-based consistency checking algorithm (HSCC) was proposed to check the consistency of an STND. Unfortunately, that approach lacks experimental evaluation and does not allow for the synthesis of all consistent scenarios. In this paper, we propose an incremental HSCC algorithm for STNDs that (i) is faster than the previous one and (ii) allows for the synthesis of all consistent scenarios and related early execution schedules (offline temporal planning). Then, we carry out an experimental evaluation with KAPPA, a tool that we developed for STNDs. Finally, we prove that STNDs and disjunctive temporal networks (DTNs) are equivalent.

Cite as

Matteo Zavatteri, Carlo Combi, Romeo Rizzi, and Luca Viganò. Hybrid SAT-Based Consistency Checking Algorithms for Simple Temporal Networks with Decisions. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{zavatteri_et_al:LIPIcs.TIME.2019.16,
  author =	{Zavatteri, Matteo and Combi, Carlo and Rizzi, Romeo and Vigan\`{o}, Luca},
  title =	{{Hybrid SAT-Based Consistency Checking Algorithms for Simple Temporal Networks with Decisions}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{16:1--16:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.16},
  URN =		{urn:nbn:de:0030-drops-113748},
  doi =		{10.4230/LIPIcs.TIME.2019.16},
  annote =	{Keywords: Simple temporal network with decisions, HSCC algorithms, incremental SAT-solving, disjunctive temporal network, KAPPA}
}
Document
Extending Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty

Authors: Carlo Combi and Roberto Posenato

Published in: LIPIcs, Volume 120, 25th International Symposium on Temporal Representation and Reasoning (TIME 2018)


Abstract
The proper handling of temporal constraints is crucial in many domains. As a particular challenge, temporal constraints must be also handled when different specific situations happen (conditional constraints) and when some event occurrences can be only observed at run time (contingent constraints). In this paper we introduce Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty (CSTNPSUs), in which contingent constraints are made more flexible (guarded constraints) and they are also specified as conditional constraints. It turns out that guarded constraints require the ability to reason on both kinds of constraints in a seamless way. In particular, we discuss CSTNPSU features through a motivating example and, then, we introduce the concept of controllability for such networks and the related sound checking algorithm.

Cite as

Carlo Combi and Roberto Posenato. Extending Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty. In 25th International Symposium on Temporal Representation and Reasoning (TIME 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 120, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{combi_et_al:LIPIcs.TIME.2018.9,
  author =	{Combi, Carlo and Posenato, Roberto},
  title =	{{Extending Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty}},
  booktitle =	{25th International Symposium on Temporal Representation and Reasoning (TIME 2018)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-089-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{120},
  editor =	{Alechina, Natasha and N{\o}rv\r{a}g, Kjetil and Penczek, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2018.9},
  URN =		{urn:nbn:de:0030-drops-97740},
  doi =		{10.4230/LIPIcs.TIME.2018.9},
  annote =	{Keywords: Conditional Simple Temporal Networks with Uncertainty, Partial Shrinkable Temporal Constraint, Dynamic Controllability, Temporal Constraints}
}
Document
Incorporating Decision Nodes into Conditional Simple Temporal Networks

Authors: Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato, Romeo Rizzi, and Matteo Zavatteri

Published in: LIPIcs, Volume 90, 24th International Symposium on Temporal Representation and Reasoning (TIME 2017)


Abstract
A Conditional Simple Temporal Network (CSTN) augments a Simple Temporal Network (STN) to include special time-points, called observation time-points. In a CSTN, the agent executing the network controls the execution of every time-point. However, each observation time-point has a unique propositional letter associated with it and, when the agent executes that time-point, the environment assigns a truth value to the corresponding letter. Thus, the agent observes but, does not control the assignment of truth values. A CSTN is dynamically consistent (DC) if there exists a strategy for executing its time-points such that all relevant constraints will be satisfied no matter which truth values the environment assigns to the propositional letters. Alternatively, in a Labeled Simple Temporal Network (Labeled STN) - also called a Temporal Plan with Choice - the agent executing the network controls the assignment of values to the so-called choice variables. Furthermore, the agent can make those assignments at any time. For this reason, a Labeled STN is equivalent to a Disjunctive Temporal Network. This paper incorporates both of the above extensions by augmenting a CSTN to include not only observation time-points but also decision time-points. A decision time-point is like an observation time-point in that it has an associated propositional letter whose value is determined when the decision time-point is executed. It differs in that the agent - not the environment - selects that value. The resulting network is called a CSTN with Decisions (CSTND). This paper shows that a CSTND generalizes both CSTNs and Labeled STNs, and proves that the problem of determining whether any given CSTND is dynamically consistent is PSPACE-complete. It also presents algorithms that address two sub-classes of CSTNDs: (1) those that contain only decision time-points; and (2) those in which all decisions are made before execution begins.

Cite as

Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posenato, Romeo Rizzi, and Matteo Zavatteri. Incorporating Decision Nodes into Conditional Simple Temporal Networks. In 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 90, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cairo_et_al:LIPIcs.TIME.2017.9,
  author =	{Cairo, Massimo and Combi, Carlo and Comin, Carlo and Hunsberger, Luke and Posenato, Roberto and Rizzi, Romeo and Zavatteri, Matteo},
  title =	{{Incorporating Decision Nodes into Conditional Simple Temporal Networks}},
  booktitle =	{24th International Symposium on Temporal Representation and Reasoning (TIME 2017)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-052-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{90},
  editor =	{Schewe, Sven and Schneider, Thomas and Wijsen, Jef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2017.9},
  URN =		{urn:nbn:de:0030-drops-79155},
  doi =		{10.4230/LIPIcs.TIME.2017.9},
  annote =	{Keywords: Conditional Simple Temporal Networks with Decisions, Dynamic Consistency, SAT Solver, Hyper Temporal Networks, PSPACE}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail