Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)
Lara Ost, Sebastiano Cultrera di Montesano, and Herbert Edelsbrunner. Banana Trees for the Persistence in Time Series Experimentally. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 71:1-71:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{ost_et_al:LIPIcs.SoCG.2025.71, author = {Ost, Lara and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert}, title = {{Banana Trees for the Persistence in Time Series Experimentally}}, booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)}, pages = {71:1--71:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-370-6}, ISSN = {1868-8969}, year = {2025}, volume = {332}, editor = {Aichholzer, Oswin and Wang, Haitao}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.71}, URN = {urn:nbn:de:0030-drops-232237}, doi = {10.4230/LIPIcs.SoCG.2025.71}, annote = {Keywords: persistent homology, time series, data structures, computational experiments} }
Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)
Sebastiano Cultrera di Montesano, Ondřej Draganov, Herbert Edelsbrunner, and Morteza Saghafian. The Euclidean MST-Ratio for Bi-Colored Lattices. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{cultreradimontesano_et_al:LIPIcs.GD.2024.3, author = {Cultrera di Montesano, Sebastiano and Draganov, Ond\v{r}ej and Edelsbrunner, Herbert and Saghafian, Morteza}, title = {{The Euclidean MST-Ratio for Bi-Colored Lattices}}, booktitle = {32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)}, pages = {3:1--3:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-343-0}, ISSN = {1868-8969}, year = {2024}, volume = {320}, editor = {Felsner, Stefan and Klein, Karsten}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.3}, URN = {urn:nbn:de:0030-drops-212878}, doi = {10.4230/LIPIcs.GD.2024.3}, annote = {Keywords: Minimum spanning Trees, Steiner Ratio, Lattices, Partitions} }
Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)
Ranita Biswas, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. Counting Cells of Order-k Voronoi Tessellations in ℝ³ with Morse Theory. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{biswas_et_al:LIPIcs.SoCG.2021.16, author = {Biswas, Ranita and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Saghafian, Morteza}, title = {{Counting Cells of Order-k Voronoi Tessellations in \mathbb{R}³ with Morse Theory}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {16:1--16:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.16}, URN = {urn:nbn:de:0030-drops-138152}, doi = {10.4230/LIPIcs.SoCG.2021.16}, annote = {Keywords: Voronoi tessellations, Delaunay mosaics, arrangements, convex polytopes, Morse theory, counting} }
Feedback for Dagstuhl Publishing