Search Results

Documents authored by Cunha, Luís


Document
On the Complexity of the Median and Closest Permutation Problems

Authors: Luís Cunha, Ignasi Sau, and Uéverton Souza

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, using some predefined operation. When more than two genomes are considered, we have the more challenging problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there are at least two natural ways to define the "target" genome. On the one hand, finding a genome that minimizes the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance, short-block-move distance, and transposition distance. In biological applications some values are usually very small, such as the solution value d or the number k of input permutations. For each of these metrics and parameters d or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance, even for only k = 3 permutations; Polynomial kernels for the problems of finding the median permutation of all studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permutation by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation for some metrics when parameterized by the target distance d.

Cite as

Luís Cunha, Ignasi Sau, and Uéverton Souza. On the Complexity of the Median and Closest Permutation Problems. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cunha_et_al:LIPIcs.WABI.2024.2,
  author =	{Cunha, Lu{\'\i}s and Sau, Ignasi and Souza, U\'{e}verton},
  title =	{{On the Complexity of the Median and Closest Permutation Problems}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.2},
  URN =		{urn:nbn:de:0030-drops-206468},
  doi =		{10.4230/LIPIcs.WABI.2024.2},
  annote =	{Keywords: Median problem, Closest problem, Genome rearrangements, Parameterized complexity}
}
Document
Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings

Authors: Luís Cunha, Simone Dantas, Travis Gagie, Roland Wittler, Luis Kowada, and Jens Stoye

Published in: LIPIcs, Volume 78, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)


Abstract
Important papers have appeared recently on the problem of indexing binary strings for jumbled pattern matching, and further lowering the time bounds in terms of the input size would now be a breakthrough with broad implications. We can still make progress on the problem, however, by considering other natural parameters. Badkobeh et al. (IPL, 2013) and Amir et al. (TCS, 2016) gave algorithms that index a binary string in O(n + r^2 log r) time, where n is the length and r is the number of runs, and Giaquinta and Grabowski (IPL, 2013) gave one that runs in O(n + r^2) time. In this paper we propose a new and very simple algorithm that also runs in O(n + r^2) time and can be extended either so that the index returns the position of a match (if there is one), or so that the algorithm uses only O(n) bits of space instead of O(n) words.

Cite as

Luís Cunha, Simone Dantas, Travis Gagie, Roland Wittler, Luis Kowada, and Jens Stoye. Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 78, pp. 19:1-19:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cunha_et_al:LIPIcs.CPM.2017.19,
  author =	{Cunha, Lu{\'\i}s and Dantas, Simone and Gagie, Travis and Wittler, Roland and Kowada, Luis and Stoye, Jens},
  title =	{{Fast and Simple Jumbled Indexing for Binary Run-Length Encoded Strings}},
  booktitle =	{28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)},
  pages =	{19:1--19:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-039-2},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{78},
  editor =	{K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.19},
  URN =		{urn:nbn:de:0030-drops-73418},
  doi =		{10.4230/LIPIcs.CPM.2017.19},
  annote =	{Keywords: string algorithms, indexing, jumbled pattern matching, run-length encoding}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail