Search Results

Documents authored by Döring, Simon


Document
Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial

Authors: Radu Curticapean, Simon Döring, and Daniel Neuen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the parameterized problem #IndSub(Φ) for fixed graph properties Φ, given as input a graph G and an integer k, the task is to compute the number of induced k-vertex subgraphs satisfying Φ. Dörfler et al. [Algorithmica 2022] and Roth et al. [SICOMP 2024] conjectured that #IndSub(Φ) is #W[1]-hard for all non-meager properties Φ, i.e., properties that are nontrivial for infinitely many k. This conjecture has been confirmed for several restricted types of properties, including all hereditary properties [STOC 2022] and all edge-monotone properties [STOC 2024]. We refute this conjecture by showing that induced k-vertex graphs that are scorpions can be counted in time O(n⁴) for all k. Scorpions were introduced more than 50 years ago in the context of the evasiveness conjecture. A simple variant of this construction results in graph properties that achieve arbitrary intermediate complexity assuming ETH. Moreover, we formulate an updated conjecture on the complexity of #IndSub(Φ) that correctly captures the complexity status of scorpions and related constructions.

Cite as

Radu Curticapean, Simon Döring, and Daniel Neuen. Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 96:1-96:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.ESA.2025.96,
  author =	{Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel},
  title =	{{Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{96:1--96:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.96},
  URN =		{urn:nbn:de:0030-drops-245651},
  doi =		{10.4230/LIPIcs.ESA.2025.96},
  annote =	{Keywords: induced subgraphs, counting complexity, parameterized complexity, scorpions}
}
Document
Can You Link Up With Treewidth?

Authors: Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
A central result by Marx [ToC '10] constructs k-vertex graphs H of maximum degree 3 such that n^o(k/log k) time algorithms for detecting colorful H-subgraphs would refute the Exponential-Time Hypothesis (ETH). This result is widely used to obtain almost-tight conditional lower bounds for parameterized problems under ETH. Our first contribution is a new and fully self-contained proof of this result that further simplifies a recent work by Karthik et al. [SOSA 2024]. In our proof, we introduce a novel graph parameter of independent interest, the linkage capacity γ(H), and show that detecting colorful H-subgraphs in time n^o(γ(H)) refutes ETH. Then, we use a simple construction of communication networks credited to Beneš to obtain k-vertex graphs of maximum degree 3 and linkage capacity Ω(k/log k), avoiding arguments involving expander graphs, which were required in previous papers. We also show that every graph H of treewidth t has linkage capacity Ω(t/log t), thus recovering a stronger result shown by Marx [ToC '10] with a simplified proof. Additionally, we obtain new tight lower bounds on the complexity of subgraph detection for certain types of patterns by analyzing their linkage capacity: We prove that almost all k-vertex graphs of polynomial average degree Ω(k^β) for β > 0 have linkage capacity Θ(k), which implies tight lower bounds for finding such patterns H. As an application of these results, we also obtain tight lower bounds for counting small induced subgraphs having a fixed property Φ, improving bounds from, e.g., [Roth et al., FOCS 2020].

Cite as

Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang. Can You Link Up With Treewidth?. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{curticapean_et_al:LIPIcs.STACS.2025.28,
  author =	{Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel and Wang, Jiaheng},
  title =	{{Can You Link Up With Treewidth?}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.28},
  URN =		{urn:nbn:de:0030-drops-228534},
  doi =		{10.4230/LIPIcs.STACS.2025.28},
  annote =	{Keywords: subgraph isomorphism, constraint satisfaction problems, linkage capacity, exponential-time hypothesis, parameterized complexity, counting complexity}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail