Search Results

Documents authored by Dogeas, Konstantinos


Document
Scheduling with Obligatory Tests

Authors: Konstantinos Dogeas, Thomas Erlebach, and Ya-Chun Liang

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Motivated by settings such as medical treatments or aircraft maintenance, we consider a scheduling problem with jobs that consist of two operations, a test and a processing part. The time required to execute the test is known in advance while the time required to execute the processing part becomes known only upon completion of the test. We use competitive analysis to study algorithms for minimizing the sum of completion times for n given jobs on a single machine. As our main result, we prove using a novel analysis technique that the natural 1-SORT algorithm has competitive ratio at most 1.861. For the special case of uniform test times, we show that a simple threshold-based algorithm has competitive ratio at most 1.585. We also prove a lower bound that shows that no deterministic algorithm can be better than √2-competitive even in the case of uniform test times.

Cite as

Konstantinos Dogeas, Thomas Erlebach, and Ya-Chun Liang. Scheduling with Obligatory Tests. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dogeas_et_al:LIPIcs.ESA.2024.48,
  author =	{Dogeas, Konstantinos and Erlebach, Thomas and Liang, Ya-Chun},
  title =	{{Scheduling with Obligatory Tests}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.48},
  URN =		{urn:nbn:de:0030-drops-211194},
  doi =		{10.4230/LIPIcs.ESA.2024.48},
  annote =	{Keywords: Competitive ratio, Online algorithm, Scheduling with testing, Sum of completion times}
}
Document
APPROX
Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Authors: Evripidis Bampis, Konstantinos Dogeas, Thomas Erlebach, Nicole Megow, Jens Schlöter, and Amitabh Trehan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the two-sided stable matching problem with one-sided uncertainty for two sets of agents A and B, with equal cardinality. Initially, the preference lists of the agents in A are given but the preferences of the agents in B are unknown. An algorithm can make queries to reveal information about the preferences of the agents in B. We examine three query models: comparison queries, interviews, and set queries. Using competitive analysis, our aim is to design algorithms that minimize the number of queries required to solve the problem of finding a stable matching or verifying that a given matching is stable (or stable and optimal for the agents of one side). We present various upper and lower bounds on the best possible competitive ratio as well as results regarding the complexity of the offline problem of determining the optimal query set given full information.

Cite as

Evripidis Bampis, Konstantinos Dogeas, Thomas Erlebach, Nicole Megow, Jens Schlöter, and Amitabh Trehan. Competitive Query Minimization for Stable Matching with One-Sided Uncertainty. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bampis_et_al:LIPIcs.APPROX/RANDOM.2024.17,
  author =	{Bampis, Evripidis and Dogeas, Konstantinos and Erlebach, Thomas and Megow, Nicole and Schl\"{o}ter, Jens and Trehan, Amitabh},
  title =	{{Competitive Query Minimization for Stable Matching with One-Sided Uncertainty}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.17},
  URN =		{urn:nbn:de:0030-drops-210100},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.17},
  annote =	{Keywords: Matching under Preferences, Stable Marriage, Query-Competitive Algorithms, Uncertainty}
}
Document
Track A: Algorithms, Complexity and Games
Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous

Authors: Konstantinos Dogeas, Thomas Erlebach, Frank Kammer, Johannes Meintrup, and William K. Moses Jr.

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Temporal graphs are dynamic graphs where the edge set can change in each time step, while the vertex set stays the same. Exploration of temporal graphs whose snapshot in each time step is a connected graph, called connected temporal graphs, has been widely studied. In this paper, we extend the concept of graph automorphisms from static graphs to temporal graphs and show for the first time that symmetries enable faster exploration: We prove that a connected temporal graph with n vertices and orbit number r (i.e., r is the number of automorphism orbits) can be explored in O(r n^{1+ε}) time steps, for any fixed ε > 0. For r = O(n^c) for constant c < 1, this is a significant improvement over the known tight worst-case bound of Θ(n²) time steps for arbitrary connected temporal graphs. We also give two lower bounds for temporal exploration, showing that Ω(n log n) time steps are required for some inputs with r = O(1) and that Ω(rn) time steps are required for some inputs for any r with 1 ≤ r ≤ n. Moreover, we show that the techniques we develop for fast exploration can be used to derive the following result for rendezvous: Two agents with different programs and without communication ability are placed by an adversary at arbitrary vertices and given full information about the connected temporal graph, except that they do not have consistent vertex labels. Then the two agents can meet at a common vertex after O(n^{1+ε}) time steps, for any constant ε > 0. For some connected temporal graphs with the orbit number being a constant, we also present a complementary lower bound of Ω(nlog n) time steps.

Cite as

Konstantinos Dogeas, Thomas Erlebach, Frank Kammer, Johannes Meintrup, and William K. Moses Jr.. Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dogeas_et_al:LIPIcs.ICALP.2024.55,
  author =	{Dogeas, Konstantinos and Erlebach, Thomas and Kammer, Frank and Meintrup, Johannes and Moses Jr., William K.},
  title =	{{Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{55:1--55:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.55},
  URN =		{urn:nbn:de:0030-drops-201989},
  doi =		{10.4230/LIPIcs.ICALP.2024.55},
  annote =	{Keywords: dynamic graphs, parameterized algorithms, algorithmic graph theory, graph automorphism, orbit number}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail