Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)
Sebastiano Cultrera di Montesano, Ondřej Draganov, Herbert Edelsbrunner, and Morteza Saghafian. The Euclidean MST-Ratio for Bi-Colored Lattices. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{cultreradimontesano_et_al:LIPIcs.GD.2024.3, author = {Cultrera di Montesano, Sebastiano and Draganov, Ond\v{r}ej and Edelsbrunner, Herbert and Saghafian, Morteza}, title = {{The Euclidean MST-Ratio for Bi-Colored Lattices}}, booktitle = {32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)}, pages = {3:1--3:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-343-0}, ISSN = {1868-8969}, year = {2024}, volume = {320}, editor = {Felsner, Stefan and Klein, Karsten}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.3}, URN = {urn:nbn:de:0030-drops-212878}, doi = {10.4230/LIPIcs.GD.2024.3}, annote = {Keywords: Minimum spanning Trees, Steiner Ratio, Lattices, Partitions} }
Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)
Herbert Edelsbrunner and János Pach. Maximum Betti Numbers of Čech Complexes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2024.53, author = {Edelsbrunner, Herbert and Pach, J\'{a}nos}, title = {{Maximum Betti Numbers of \v{C}ech Complexes}}, booktitle = {40th International Symposium on Computational Geometry (SoCG 2024)}, pages = {53:1--53:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-316-4}, ISSN = {1868-8969}, year = {2024}, volume = {293}, editor = {Mulzer, Wolfgang and Phillips, Jeff M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.53}, URN = {urn:nbn:de:0030-drops-199981}, doi = {10.4230/LIPIcs.SoCG.2024.53}, annote = {Keywords: Discrete geometry, computational topology, \v{C}ech complexes, Delaunay mosaics, Alpha complexes, Betti numbers, extremal questions} }
Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)
Ranita Biswas, Sebastiano Cultrera di Montesano, Herbert Edelsbrunner, and Morteza Saghafian. Counting Cells of Order-k Voronoi Tessellations in ℝ³ with Morse Theory. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{biswas_et_al:LIPIcs.SoCG.2021.16, author = {Biswas, Ranita and Cultrera di Montesano, Sebastiano and Edelsbrunner, Herbert and Saghafian, Morteza}, title = {{Counting Cells of Order-k Voronoi Tessellations in \mathbb{R}³ with Morse Theory}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {16:1--16:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.16}, URN = {urn:nbn:de:0030-drops-138152}, doi = {10.4230/LIPIcs.SoCG.2021.16}, annote = {Keywords: Voronoi tessellations, Delaunay mosaics, arrangements, convex polytopes, Morse theory, counting} }
Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)
Herbert Edelsbrunner, Teresa Heiss, Vitaliy Kurlin, Philip Smith, and Mathijs Wintraecken. The Density Fingerprint of a Periodic Point Set. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 32:1-32:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2021.32, author = {Edelsbrunner, Herbert and Heiss, Teresa and Kurlin, Vitaliy and Smith, Philip and Wintraecken, Mathijs}, title = {{The Density Fingerprint of a Periodic Point Set}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {32:1--32:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.32}, URN = {urn:nbn:de:0030-drops-138310}, doi = {10.4230/LIPIcs.SoCG.2021.32}, annote = {Keywords: Lattices, periodic sets, isometries, Dirichlet-Voronoi domains, Brillouin zones, bottleneck distance, stability, continuity, crystal database} }
Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)
Herbert Edelsbrunner, Žiga Virk, and Hubert Wagner. Topological Data Analysis in Information Space. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2019.31, author = {Edelsbrunner, Herbert and Virk, \v{Z}iga and Wagner, Hubert}, title = {{Topological Data Analysis in Information Space}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {31:1--31:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.31}, URN = {urn:nbn:de:0030-drops-104357}, doi = {10.4230/LIPIcs.SoCG.2019.31}, annote = {Keywords: Computational topology, persistent homology, information theory, entropy} }
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
Herbert Edelsbrunner and Georg Osang. The Multi-cover Persistence of Euclidean Balls. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2018.34, author = {Edelsbrunner, Herbert and Osang, Georg}, title = {{The Multi-cover Persistence of Euclidean Balls}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {34:1--34:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.34}, URN = {urn:nbn:de:0030-drops-87471}, doi = {10.4230/LIPIcs.SoCG.2018.34}, annote = {Keywords: Delaunay mosaics, hyperplane arrangements, discrete Morse theory, zigzag modules, persistent homology} }
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
Herbert Edelsbrunner, Ziga Virk, and Hubert Wagner. Smallest Enclosing Spheres and Chernoff Points in BregmanGeometry. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 35:1-35:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2018.35, author = {Edelsbrunner, Herbert and Virk, Ziga and Wagner, Hubert}, title = {{Smallest Enclosing Spheres and Chernoff Points in BregmanGeometry}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {35:1--35:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.35}, URN = {urn:nbn:de:0030-drops-87487}, doi = {10.4230/LIPIcs.SoCG.2018.35}, annote = {Keywords: Bregman divergence, smallest enclosing spheres, Chernoff points, convexity, barycenter polytopes} }
Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)
Herbert Edelsbrunner and Hubert Wagner. Topological Data Analysis with Bregman Divergences. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 39:1-39:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{edelsbrunner_et_al:LIPIcs.SoCG.2017.39, author = {Edelsbrunner, Herbert and Wagner, Hubert}, title = {{Topological Data Analysis with Bregman Divergences}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {39:1--39:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.39}, URN = {urn:nbn:de:0030-drops-71985}, doi = {10.4230/LIPIcs.SoCG.2017.39}, annote = {Keywords: Topological data analysis, Bregman divergences, persistent homology, proximity complexes, algorithms} }
Feedback for Dagstuhl Publishing