Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)
David Dingel, Fabian Egidy, and Christian Glaßer. An Oracle with no UP-Complete Sets, but NP = PSPACE. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 50:1-50:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{dingel_et_al:LIPIcs.MFCS.2024.50, author = {Dingel, David and Egidy, Fabian and Gla{\ss}er, Christian}, title = {{An Oracle with no UP-Complete Sets, but NP = PSPACE}}, booktitle = {49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)}, pages = {50:1--50:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-335-5}, ISSN = {1868-8969}, year = {2024}, volume = {306}, editor = {Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.50}, URN = {urn:nbn:de:0030-drops-206063}, doi = {10.4230/LIPIcs.MFCS.2024.50}, annote = {Keywords: Computational Complexity, Promise Classes, Complete Sets, Oracle Construction} }
Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
Fabian Egidy, Christian Glaßer, and Martin Herold. Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{egidy_et_al:LIPIcs.MFCS.2023.44, author = {Egidy, Fabian and Gla{\ss}er, Christian and Herold, Martin}, title = {{Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP}}, booktitle = {48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)}, pages = {44:1--44:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-292-1}, ISSN = {1868-8969}, year = {2023}, volume = {272}, editor = {Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.44}, URN = {urn:nbn:de:0030-drops-185784}, doi = {10.4230/LIPIcs.MFCS.2023.44}, annote = {Keywords: Computational Complexity, Boolean Hierarchy, Proof Complexity, Proof Systems, Oracle Construction} }
Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)
Anton Ehrmanntraut, Fabian Egidy, and Christian Glaßer. Oracle with P = NP ∩ coNP, but No Many-One Completeness in UP, DisjNP, and DisjCoNP. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 45:1-45:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{ehrmanntraut_et_al:LIPIcs.MFCS.2022.45, author = {Ehrmanntraut, Anton and Egidy, Fabian and Gla{\ss}er, Christian}, title = {{Oracle with P = NP ∩ coNP, but No Many-One Completeness in UP, DisjNP, and DisjCoNP}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {45:1--45:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.45}, URN = {urn:nbn:de:0030-drops-168435}, doi = {10.4230/LIPIcs.MFCS.2022.45}, annote = {Keywords: computational complexity, promise classes, proof complexity, complete sets, oracle construction} }
Feedback for Dagstuhl Publishing