Search Results

Documents authored by Felleisen, Matthias


Document
Type Tailoring

Authors: Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Type systems evolve too slowly to keep up with the quick evolution of libraries - especially libraries that introduce abstractions. Type tailoring offers a lightweight solution by equipping the core language with an API for modifying the elaboration of surface code into the internal language of the typechecker. Through user-programmable elaboration, tailoring rules appear to improve the precision and expressiveness of the underlying type system. Furthermore, type tailoring cooperates with the host type system by expanding to code that the host then typechecks. In the context of a hygienic metaprogramming system, tailoring rules can even harmoniously compose with one another. Type tailoring has emerged as a theme across several languages and metaprogramming systems, but never with direct support and rarely in the same shape twice. For example, both OCaml and Typed Racket enable forms of tailoring, but in quite different ways. This paper identifies key dimensions of type tailoring systems and tradeoffs along each dimension. It demonstrates the usefulness of tailoring with examples that cover sized vectors, database queries, and optional types. Finally, it outlines a vision for future research at the intersection of types and metaprogramming.

Cite as

Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman. Type Tailoring. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 44:1-44:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wiersdorf_et_al:LIPIcs.ECOOP.2024.44,
  author =	{Wiersdorf, Ashton and Chang, Stephen and Felleisen, Matthias and Greenman, Ben},
  title =	{{Type Tailoring}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{44:1--44:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.44},
  URN =		{urn:nbn:de:0030-drops-208933},
  doi =		{10.4230/LIPIcs.ECOOP.2024.44},
  annote =	{Keywords: Types, Metaprogramming, Macros, Partial Evaluation}
}
Document
Artifact
Type Tailoring (Artifact)

Authors: Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman

Published in: DARTS, Volume 10, Issue 2, Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Type systems evolve too slowly to keep up with the quick evolution of libraries - especially libraries that introduce abstractions. Type tailoring offers a lightweight solution by equipping the core language with an API for modifying the elaboration of surface code into the internal language of the typechecker. Through user-programmable elaboration, tailoring rules appear to improve the precision and expressiveness of the underlying type system. Furthermore, type tailoring cooperates with the host type system by expanding to code that the host then typechecks. In the context of a hygienic metaprogramming system, tailoring rules can even harmoniously compose with one another. Type tailoring has emerged as a theme across several languages and metaprogramming systems, but never with direct support and rarely in the same shape twice. For example, both OCaml and Typed Racket enable forms of tailoring, but in quite different ways. This paper identifies key dimensions of type tailoring systems and tradeoffs along each dimension. It demonstrates the usefulness of tailoring with examples that cover sized vectors, database queries, and optional types. Finally, it outlines a vision for future research at the intersection of types and metaprogramming.

Cite as

Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman. Type Tailoring (Artifact). In Special Issue of the 38th European Conference on Object-Oriented Programming (ECOOP 2024). Dagstuhl Artifacts Series (DARTS), Volume 10, Issue 2, pp. 24:1-24:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{wiersdorf_et_al:DARTS.10.2.24,
  author =	{Wiersdorf, Ashton and Chang, Stephen and Felleisen, Matthias and Greenman, Ben},
  title =	{{Type Tailoring (Artifact)}},
  pages =	{24:1--24:2},
  journal =	{Dagstuhl Artifacts Series},
  ISBN =	{978-3-95977-342-3},
  ISSN =	{2509-8195},
  year =	{2024},
  volume =	{10},
  number =	{2},
  editor =	{Wiersdorf, Ashton and Chang, Stephen and Felleisen, Matthias and Greenman, Ben},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.10.2.24},
  URN =		{urn:nbn:de:0030-drops-209220},
  doi =		{10.4230/DARTS.10.2.24},
  annote =	{Keywords: Types, Metaprogramming, Macros, Partial Evaluation}
}
Document
Injecting Language Workbench Technology into Mainstream Languages

Authors: Michael Ballantyne and Matthias Felleisen

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Eelco Visser envisioned a future where DSLs become a commonplace abstraction in software development. He took strides towards implementing this vision with the Spoofax language workbench. However, his vision is far from the mainstream of programming today. How will the many mainstream programmers encounter and adopt language workbench technology? We propose that the macro systems found in emerging industrial languages open a path towards delivering language workbenches as easy-to-adopt libraries. To develop the idea, we sketch an implementation of a language workbench as a macro-library atop Racket and identify the key features of the macro system needed to enable this evolution path.

Cite as

Michael Ballantyne and Matthias Felleisen. Injecting Language Workbench Technology into Mainstream Languages. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 3:1-3:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ballantyne_et_al:OASIcs.EVCS.2023.3,
  author =	{Ballantyne, Michael and Felleisen, Matthias},
  title =	{{Injecting Language Workbench Technology into Mainstream Languages}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{3:1--3:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.3},
  URN =		{urn:nbn:de:0030-drops-177737},
  doi =		{10.4230/OASIcs.EVCS.2023.3},
  annote =	{Keywords: Language workbenches, macro systems, language adoption}
}
Document
From Macros to DSLs: The Evolution of Racket

Authors: Ryan Culpepper, Matthias Felleisen, Matthew Flatt, and Shriram Krishnamurthi

Published in: LIPIcs, Volume 136, 3rd Summit on Advances in Programming Languages (SNAPL 2019)


Abstract
The Racket language promotes a language-oriented style of programming. Developers create many domain-specific languages, write programs in them, and compose these programs via Racket code. This style of programming can work only if creating and composing little languages is simple and effective. While Racket’s Lisp heritage might suggest that macros suffice, its design team discovered significant shortcomings and had to improve them in many ways. This paper presents the evolution of Racket’s macro system, including a false start, and assesses its current state.

Cite as

Ryan Culpepper, Matthias Felleisen, Matthew Flatt, and Shriram Krishnamurthi. From Macros to DSLs: The Evolution of Racket. In 3rd Summit on Advances in Programming Languages (SNAPL 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 136, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{culpepper_et_al:LIPIcs.SNAPL.2019.5,
  author =	{Culpepper, Ryan and Felleisen, Matthias and Flatt, Matthew and Krishnamurthi, Shriram},
  title =	{{From Macros to DSLs: The Evolution of Racket}},
  booktitle =	{3rd Summit on Advances in Programming Languages (SNAPL 2019)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-113-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{136},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2019.5},
  URN =		{urn:nbn:de:0030-drops-105482},
  doi =		{10.4230/LIPIcs.SNAPL.2019.5},
  annote =	{Keywords: design principles, macros systems, domain-specific languages}
}
Document
Migratory Typing: Ten Years Later

Authors: Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa

Published in: LIPIcs, Volume 71, 2nd Summit on Advances in Programming Languages (SNAPL 2017)


Abstract
In this day and age, many developers work on large, untyped code repositories. Even if they are the creators of the code, they notice that they have to figure out the equivalent of method signatures every time they work on old code. This step is time consuming and error prone. Ten years ago, the two lead authors outlined a linguistic solution to this problem. Specifically they proposed the creation of typed twins for untyped programming languages so that developers could migrate scripts from the untyped world to a typed one in an incremental manner. Their programmatic paper also spelled out three guiding design principles concerning the acceptance of grown idioms, the soundness of mixed-typed programs, and the units of migration. This paper revisits this idea of a migratory type system as implemented for Racket. It explains how the design principles have been used to produce the Typed Racket twin and presents an assessment of the project's status, highlighting successes and failures.

Cite as

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa. Migratory Typing: Ten Years Later. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 71, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{tobinhochstadt_et_al:LIPIcs.SNAPL.2017.17,
  author =	{Tobin-Hochstadt, Sam and Felleisen, Matthias and Findler, Robert and Flatt, Matthew and Greenman, Ben and Kent, Andrew M. and St-Amour, Vincent and Strickland, T. Stephen and Takikawa, Asumu},
  title =	{{Migratory Typing: Ten Years Later}},
  booktitle =	{2nd Summit on Advances in Programming Languages (SNAPL 2017)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-032-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{71},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2017.17},
  URN =		{urn:nbn:de:0030-drops-71202},
  doi =		{10.4230/LIPIcs.SNAPL.2017.17},
  annote =	{Keywords: design principles, type systems, gradual typing}
}
Document
Towards Practical Gradual Typing

Authors: Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam Tobin-Hochstadt, and Matthias Felleisen

Published in: LIPIcs, Volume 37, 29th European Conference on Object-Oriented Programming (ECOOP 2015)


Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages. By now, they have also come to realize that programs in these languages lack reliable type information for software engineering purposes. Gradual typing addresses this problem; it empowers programmers to annotate an existing system with sound type information on a piecemeal basis. This paper presents an implementation of a gradual type system for a full-featured class-based language as well as a novel performance evaluation framework for gradual typing.

Cite as

Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam Tobin-Hochstadt, and Matthias Felleisen. Towards Practical Gradual Typing. In 29th European Conference on Object-Oriented Programming (ECOOP 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 37, pp. 4-27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{takikawa_et_al:LIPIcs.ECOOP.2015.4,
  author =	{Takikawa, Asumu and Feltey, Daniel and Dean, Earl and Flatt, Matthew and Findler, Robert Bruce and Tobin-Hochstadt, Sam and Felleisen, Matthias},
  title =	{{Towards Practical Gradual Typing}},
  booktitle =	{29th European Conference on Object-Oriented Programming (ECOOP 2015)},
  pages =	{4--27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-86-6},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{37},
  editor =	{Boyland, John Tang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2015.4},
  URN =		{urn:nbn:de:0030-drops-52156},
  doi =		{10.4230/LIPIcs.ECOOP.2015.4},
  annote =	{Keywords: Gradual typing, object-oriented programming, performance evaluation}
}
Document
The Racket Manifesto

Authors: Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
The creation of a programming language calls for guiding principles that point the developers to goals. This article spells out the three basic principles behind the 20-year development of Racket. First, programming is about stating and solving problems, and this activity normally takes place in a context with its own language of discourse; good programmers ought to formulate this language as a programming language. Hence, Racket is a programming language for creating new programming languages. Second, by following this language-oriented approach to programming, systems become multi-lingual collections of interconnected components. Each language and component must be able to protect its specific invariants. In support, Racket offers protection mechanisms to implement a full language spectrum, from C-level bit manipulation to soundly typed extensions. Third, because Racket considers programming as problem solving in the correct language, Racket also turns extra-linguistic mechanisms into linguistic constructs, especially mechanisms for managing resources and projects. The paper explains these principles and how Racket lives up to them, presents the evaluation framework behind the design process, and concludes with a sketch of Racket's imperfections and opportunities for future improvements.

Cite as

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. The Racket Manifesto. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 113-128, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{felleisen_et_al:LIPIcs.SNAPL.2015.113,
  author =	{Felleisen, Matthias and Findler, Robert Bruce and Flatt, Matthew and Krishnamurthi, Shriram and Barzilay, Eli and McCarthy, Jay and Tobin-Hochstadt, Sam},
  title =	{{The Racket Manifesto}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{113--128},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.113},
  URN =		{urn:nbn:de:0030-drops-50211},
  doi =		{10.4230/LIPIcs.SNAPL.2015.113},
  annote =	{Keywords: design guidelines, language generation, full-spectrum language}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail