Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)
Benjamin Hackl and Stephan Wagner. Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 19:1-19:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{hackl_et_al:LIPIcs.AofA.2024.19, author = {Hackl, Benjamin and Wagner, Stephan}, title = {{Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study}}, booktitle = {35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)}, pages = {19:1--19:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-329-4}, ISSN = {1868-8969}, year = {2024}, volume = {302}, editor = {Mailler, C\'{e}cile and Wild, Sebastian}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.19}, URN = {urn:nbn:de:0030-drops-204549}, doi = {10.4230/LIPIcs.AofA.2024.19}, annote = {Keywords: binomial sum, Mellin transform, asymptotics, explicit error bounds, B-terms} }
Published in: LIPIcs, Volume 225, 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)
Benjamin Hackl, Alois Panholzer, and Stephan Wagner. Uncovering a Random Tree. In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 225, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{hackl_et_al:LIPIcs.AofA.2022.10, author = {Hackl, Benjamin and Panholzer, Alois and Wagner, Stephan}, title = {{Uncovering a Random Tree}}, booktitle = {33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)}, pages = {10:1--10:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-230-3}, ISSN = {1868-8969}, year = {2022}, volume = {225}, editor = {Ward, Mark Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.10}, URN = {urn:nbn:de:0030-drops-160962}, doi = {10.4230/LIPIcs.AofA.2022.10}, annote = {Keywords: Labeled tree, uncover process, functional central limit theorem, limiting distribution, phase transition} }
Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)
Benjamin Hackl, Clemens Heuberger, and Helmut Prodinger. Counting Ascents in Generalized Dyck Paths. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{hackl_et_al:LIPIcs.AofA.2018.26, author = {Hackl, Benjamin and Heuberger, Clemens and Prodinger, Helmut}, title = {{Counting Ascents in Generalized Dyck Paths}}, booktitle = {29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)}, pages = {26:1--26:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-078-1}, ISSN = {1868-8969}, year = {2018}, volume = {110}, editor = {Fill, James Allen and Ward, Mark Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.26}, URN = {urn:nbn:de:0030-drops-89191}, doi = {10.4230/LIPIcs.AofA.2018.26}, annote = {Keywords: Lattice path, Lukasiewicz path, ascent, asymptotic analysis, implicit function, singular inversion} }
Feedback for Dagstuhl Publishing