Search Results

Documents authored by Herbreteau, Frédéric


Document
Checking Timed Büchi Automata Emptiness Using the Local-Time Semantics

Authors: Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We study the Büchi non-emptiness problem for networks of timed automata. Standard solutions consider the network as a monolithic timed automaton obtained as a synchronized product and build its zone graph on-the-fly under the classical global-time semantics. In the global-time semantics, all processes are assumed to have a common global timeline. Bengtsson et al. in 1998 have proposed a local-time semantics where each process in the network moves independently according to a local timeline, and processes synchronize their timelines when they do a common action. It has been shown that the local-time semantics is equivalent to the global-time semantics for finite runs, and hence can be used for checking reachability. The local-time semantics allows computation of a local zone graph which has good independence properties and is amenable to partial-order methods. Hence local zone graphs are able to better tackle the state-space explosion due to concurrency. In this work, we extend the results to the Büchi setting. We propose a local zone graph computation that can be coupled with a partial-order method, to solve the Büchi non-emptiness problem in timed networks. In the process, we develop a theory of regions for the local-time semantics.

Cite as

Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Checking Timed Büchi Automata Emptiness Using the Local-Time Semantics. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{herbreteau_et_al:LIPIcs.CONCUR.2022.12,
  author =	{Herbreteau, Fr\'{e}d\'{e}ric and Srivathsan, B. and Walukiewicz, Igor},
  title =	{{Checking Timed B\"{u}chi Automata Emptiness Using the Local-Time Semantics}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.12},
  URN =		{urn:nbn:de:0030-drops-170756},
  doi =		{10.4230/LIPIcs.CONCUR.2022.12},
  annote =	{Keywords: Timed B\"{u}chi automata, local-time semantics, zones, abstraction, partial-order reduction}
}
Document
Revisiting Local Time Semantics for Networks of Timed Automata

Authors: R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We investigate a zone based approach for the reachability problem in timed automata. The challenge is to alleviate the size explosion of the search space when considering networks of timed automata working in parallel. In the timed setting this explosion is particularly visible as even different interleavings of local actions of processes may lead to different zones. Salah et al. in 2006 have shown that the union of all these different zones is also a zone. This observation was used in an algorithm which from time to time detects and aggregates these zones into a single zone. We show that such aggregated zones can be calculated more efficiently using the local time semantics and the related notion of local zones proposed by Bengtsson et al. in 1998. Next, we point out a flaw in the existing method to ensure termination of the local zone graph computation. We fix this with a new algorithm that builds the local zone graph and uses abstraction techniques over (standard) zones for termination. We evaluate our algorithm on standard examples. On various examples, we observe an order of magnitude decrease in the search space. On the other examples, the algorithm performs like the standard zone algorithm.

Cite as

R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Revisiting Local Time Semantics for Networks of Timed Automata. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{govind_et_al:LIPIcs.CONCUR.2019.16,
  author =	{Govind, R. and Herbreteau, Fr\'{e}d\'{e}ric and Srivathsan, B. and Walukiewicz, Igor},
  title =	{{Revisiting Local Time Semantics for Networks of Timed Automata}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{16:1--16:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.16},
  URN =		{urn:nbn:de:0030-drops-109184},
  doi =		{10.4230/LIPIcs.CONCUR.2019.16},
  annote =	{Keywords: Timed automata, verification, local-time semantics, abstraction}
}
Document
Why Liveness for Timed Automata Is Hard, and What We Can Do About It

Authors: Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz

Published in: LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)


Abstract
The liveness problem for timed automata asks if a given automaton has a run passing infinitely often through an accepting state. We show that unless P=NP, the liveness problem is more difficult than the reachability problem; more precisely, we exhibit a family of automata for which solving the reachability problem with the standard algorithm is in P but solving the liveness problem is NP-hard. This leads us to revisit the algorithmics for the liveness problem. We propose a notion of a witness for the fact that a timed automaton violates a liveness property. We give an algorithm for computing such a witness and compare it with the existing solutions.

Cite as

Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why Liveness for Timed Automata Is Hard, and What We Can Do About It. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{herbreteau_et_al:LIPIcs.FSTTCS.2016.48,
  author =	{Herbreteau, Fr\'{e}d\'{e}ric and Srivathsan, B. and Tran, Thanh-Tung and Walukiewicz, Igor},
  title =	{{Why Liveness for Timed Automata Is Hard, and What We Can Do About It}},
  booktitle =	{36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-027-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{65},
  editor =	{Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.48},
  URN =		{urn:nbn:de:0030-drops-68831},
  doi =		{10.4230/LIPIcs.FSTTCS.2016.48},
  annote =	{Keywords: Timed automata, model-checking, liveness invariant, state subsumption}
}
Document
Using non-convex approximations for efficient analysis of timed automata

Authors: Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz

Published in: LIPIcs, Volume 13, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)


Abstract
The reachability problem for timed automata asks if there exists a path from an initial state to a target state. The standard solution to this problem involves computing the zone graph of the automaton, which in principle could be infinite. In order to make the graph finite, zones are approximated using an extrapolation operator. For reasons of efficiency in current algorithms extrapolation of a zone is always a zone; and in particular it is convex. In this paper, we propose to solve the reachability problem without such extrapolation operators. To ensure termination, we provide an efficient algorithm to check if a zone is included in the so called region closure of another. Although theoretically better, closure cannot be used in the standard algorithm since a closure of a zone may not be convex. An additional benefit of the proposed approach is that it permits to calculate approximating parameters on-the-fly during exploration of the zone graph, as opposed to the current methods which do it by a static analysis of the automaton prior to the exploration. This allows for further improvements in the algorithm. Promising experimental results are presented.

Cite as

Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz. Using non-convex approximations for efficient analysis of timed automata. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 78-89, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{herbreteau_et_al:LIPIcs.FSTTCS.2011.78,
  author =	{Herbreteau, Fr\'{e}d\'{e}ric and Kini, Dileep and Srivathsan, B. and Walukiewicz, Igor},
  title =	{{Using non-convex approximations for efficient analysis of timed automata}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)},
  pages =	{78--89},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-34-7},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{13},
  editor =	{Chakraborty, Supratik and Kumar, Amit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.78},
  URN =		{urn:nbn:de:0030-drops-33619},
  doi =		{10.4230/LIPIcs.FSTTCS.2011.78},
  annote =	{Keywords: Timed Automata, Model-checking, Non-convex abstraction, On-the-fly abstraction}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail