Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)
Jan Hazla, Thomas Holenstein, and Elchanan Mossel. Lower Bounds on Same-Set Inner Product in Correlated Spaces. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{hazla_et_al:LIPIcs.APPROX-RANDOM.2016.34, author = {Hazla, Jan and Holenstein, Thomas and Mossel, Elchanan}, title = {{Lower Bounds on Same-Set Inner Product in Correlated Spaces}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)}, pages = {34:1--34:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-018-7}, ISSN = {1868-8969}, year = {2016}, volume = {60}, editor = {Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.34}, URN = {urn:nbn:de:0030-drops-66571}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2016.34}, annote = {Keywords: same set hitting, product spaces, correlation, lower bounds} }
Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)
Jan Hazla and Thomas Holenstein. Upper Tail Estimates with Combinatorial Proofs. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 392-405, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
@InProceedings{hazla_et_al:LIPIcs.STACS.2015.392, author = {Hazla, Jan and Holenstein, Thomas}, title = {{Upper Tail Estimates with Combinatorial Proofs}}, booktitle = {32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)}, pages = {392--405}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-78-1}, ISSN = {1868-8969}, year = {2015}, volume = {30}, editor = {Mayr, Ernst W. and Ollinger, Nicolas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.392}, URN = {urn:nbn:de:0030-drops-49291}, doi = {10.4230/LIPIcs.STACS.2015.392}, annote = {Keywords: concentration bounds, expander random walks, polynomial concentration} }
Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)
Chandan Dubey and Thomas Holenstein. Sampling a Uniform Solution of a Quadratic Equation Modulo a Prime Power. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 643-653, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
@InProceedings{dubey_et_al:LIPIcs.APPROX-RANDOM.2014.643, author = {Dubey, Chandan and Holenstein, Thomas}, title = {{Sampling a Uniform Solution of a Quadratic Equation Modulo a Prime Power}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)}, pages = {643--653}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-74-3}, ISSN = {1868-8969}, year = {2014}, volume = {28}, editor = {Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.643}, URN = {urn:nbn:de:0030-drops-47289}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2014.643}, annote = {Keywords: Quadratic Forms, Lattices, Modular, p-adic} }