Search Results

Documents authored by Klein, Nathan


Document
APPROX
A Randomized Rounding Approach for DAG Edge Deletion

Authors: Sina Kalantarzadeh, Nathan Klein, and Victor Reis

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
In the DAG Edge Deletion problem, we are given an edge-weighted directed acyclic graph and a parameter k, and the goal is to delete the minimum weight set of edges so that the resulting graph has no paths of length k. This problem, which has applications to scheduling, was introduced in 2015 by Kenkre, Pandit, Purohit, and Saket. They gave a k-approximation and showed that it is UGC-Hard to approximate better than ⌊0.5k⌋ for any constant k ≥ 4 using a work of Svensson from 2012. The approximation ratio was improved to 2/3(k+1) by Klein and Wexler in 2016. In this work, we introduce a randomized rounding framework based on distributions over vertex labels in [0,1]. The most natural distribution is to sample labels independently from the uniform distribution over [0,1]. We show this leads to a (2-√2)(k+1) ≈ 0.585(k+1)-approximation. By using a modified (but still independent) label distribution, we obtain a 0.549(k+1)-approximation for the problem, as well as show that no independent distribution over labels can improve our analysis to below 0.542(k+1). Finally, we show a 0.5(k+1)-approximation for bipartite graphs and for instances with structured LP solutions. Whether this ratio can be obtained in general is open.

Cite as

Sina Kalantarzadeh, Nathan Klein, and Victor Reis. A Randomized Rounding Approach for DAG Edge Deletion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kalantarzadeh_et_al:LIPIcs.APPROX/RANDOM.2025.18,
  author =	{Kalantarzadeh, Sina and Klein, Nathan and Reis, Victor},
  title =	{{A Randomized Rounding Approach for DAG Edge Deletion}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.18},
  URN =		{urn:nbn:de:0030-drops-243840},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.18},
  annote =	{Keywords: Approximation Algorithms, Randomized Algorithms, Linear Programming, Graph Algorithms, Scheduling}
}
Document
APPROX
Dual Charging for Half-Integral TSP

Authors: Nathan Klein and Mehrshad Taziki

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
In this extended abstract, we show that the max entropy algorithm is a randomized 1.49776 approximation for half-integral TSP, improving upon the previous known bound of 1.49993 from Karlin et al. This also improves upon the best-known approximation for half-integral TSP due to Gupta et al. Our improvement results from using the dual, instead of the primal, to analyze the expected cost of the matching. We believe this method of analysis could lead to a simpler proof that max entropy is a better-than-3/2 approximation in the general case.

Cite as

Nathan Klein and Mehrshad Taziki. Dual Charging for Half-Integral TSP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{klein_et_al:LIPIcs.APPROX/RANDOM.2025.21,
  author =	{Klein, Nathan and Taziki, Mehrshad},
  title =	{{Dual Charging for Half-Integral TSP}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.21},
  URN =		{urn:nbn:de:0030-drops-243879},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.21},
  annote =	{Keywords: Approximation Algorithms, Graph Algorithms, Randomized Rounding, Linear Programming}
}
Document
Track A: Algorithms, Complexity and Games
From Trees to Polynomials and Back Again: New Capacity Bounds with Applications to TSP

Authors: Leonid Gurvits, Nathan Klein, and Jonathan Leake

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution, depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor improvement of their approximation factor for metric TSP. Our results also allow for a more streamlined analysis of the algorithm. To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the productization technique for bounding the capacity of a real stable polynomial. This technique allows one to reduce certain inequalities for real stable polynomials to products of affine linear forms, which have an underlying matrix structure. In this paper, we push this technique further by characterizing the worst-case polynomials via bipartitioned forests. This rigid combinatorial structure yields a clean induction argument, which implies our stronger bounds. In general, we believe the results of this paper will lead to further improvement and simplification of the analysis of various combinatorial and probabilistic bounds and algorithms.

Cite as

Leonid Gurvits, Nathan Klein, and Jonathan Leake. From Trees to Polynomials and Back Again: New Capacity Bounds with Applications to TSP. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 79:1-79:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurvits_et_al:LIPIcs.ICALP.2024.79,
  author =	{Gurvits, Leonid and Klein, Nathan and Leake, Jonathan},
  title =	{{From Trees to Polynomials and Back Again: New Capacity Bounds with Applications to TSP}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{79:1--79:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.79},
  URN =		{urn:nbn:de:0030-drops-202229},
  doi =		{10.4230/LIPIcs.ICALP.2024.79},
  annote =	{Keywords: traveling salesman problem, strongly Rayleigh distributions, polynomial capacity, probability lower bounds, combinatorial lower bounds}
}
Document
Matroid Partition Property and the Secretary Problem

Authors: Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A matroid M on a set E of elements has the α-partition property, for some α > 0, if it is possible to (randomly) construct a partition matroid 𝒫 on (a subset of) elements of M such that every independent set of 𝒫 is independent in M and for any weight function w:E → ℝ_{≥0}, the expected value of the optimum of the matroid secretary problem on 𝒫 is at least an α-fraction of the optimum on M. We show that the complete binary matroid, B_d on 𝔽₂^d does not satisfy the α-partition property for any constant α > 0 (independent of d). Furthermore, we refute a recent conjecture of [Kristóf Bérczi et al., 2021] by showing the same matroid is 2^d/d-colorable but cannot be reduced to an α 2^d/d-colorable partition matroid for any α that is sublinear in d.

Cite as

Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. Matroid Partition Property and the Secretary Problem. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 2:1-2:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abdolazimi_et_al:LIPIcs.ITCS.2023.2,
  author =	{Abdolazimi, Dorna and Karlin, Anna R. and Klein, Nathan and Oveis Gharan, Shayan},
  title =	{{Matroid Partition Property and the Secretary Problem}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{2:1--2:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.2},
  URN =		{urn:nbn:de:0030-drops-175051},
  doi =		{10.4230/LIPIcs.ITCS.2023.2},
  annote =	{Keywords: Online algorithms, Matroids, Matroid secretary problem}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail