Search Results

Documents authored by Kosche, Maria


Document
Subsequences with Gap Constraints: Complexity Bounds for Matching and Analysis Problems

Authors: Joel D. Day, Maria Kosche, Florin Manea, and Markus L. Schmid

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We consider subsequences with gap constraints, i. e., length-k subsequences p that can be embedded into a string w such that the induced gaps (i. e., the factors of w between the positions to which p is mapped to) satisfy given gap constraints gc = (C_1, C_2, …, C_{k-1}); we call p a gc-subsequence of w. In the case where the gap constraints gc are defined by lower and upper length bounds C_i = (L^-_i, L^+_i) ∈ ℕ² and/or regular languages C_i ∈ REG, we prove tight (conditional on the orthogonal vectors (OV) hypothesis) complexity bounds for checking whether a given p is a gc-subsequence of a string w. We also consider the whole set of all gc-subsequences of a string, and investigate the complexity of the universality, equivalence and containment problems for these sets of gc-subsequences.

Cite as

Joel D. Day, Maria Kosche, Florin Manea, and Markus L. Schmid. Subsequences with Gap Constraints: Complexity Bounds for Matching and Analysis Problems. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 64:1-64:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{day_et_al:LIPIcs.ISAAC.2022.64,
  author =	{Day, Joel D. and Kosche, Maria and Manea, Florin and Schmid, Markus L.},
  title =	{{Subsequences with Gap Constraints: Complexity Bounds for Matching and Analysis Problems}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{64:1--64:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.64},
  URN =		{urn:nbn:de:0030-drops-173493},
  doi =		{10.4230/LIPIcs.ISAAC.2022.64},
  annote =	{Keywords: String algorithms, subsequences with gap constraints, pattern matching, fine-grained complexity, conditional lower bounds, parameterised complexity}
}
Document
The Edit Distance to k-Subsequence Universality

Authors: Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
A word u is a subsequence of another word w if u can be obtained from w by deleting some of its letters. In the early 1970s, Imre Simon defined the relation ∼_k (called now Simon-Congruence) as follows: two words having exactly the same set of subsequences of length at most k are ∼_k-congruent. This relation was central in defining and analysing piecewise testable languages, but has found many applications in areas such as algorithmic learning theory, databases theory, or computational linguistics. Recently, it was shown that testing whether two words are ∼_k-congruent can be done in optimal linear time. Thus, it is a natural next step to ask, for two words w and u which are not ∼_k-equivalent, what is the minimal number of edit operations that we need to perform on w in order to obtain a word which is ∼_k-equivalent to u. In this paper, we consider this problem in a setting which seems interesting: when u is a k-subsequence universal word. A word u with alph(u) = Σ is called k-subsequence universal if the set of subsequences of length k of u contains all possible words of length k over Σ. As such, our results are a series of efficient algorithms computing the edit distance from w to the language of k-subsequence universal words.

Cite as

Joel D. Day, Pamela Fleischmann, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. The Edit Distance to k-Subsequence Universality. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{day_et_al:LIPIcs.STACS.2021.25,
  author =	{Day, Joel D. and Fleischmann, Pamela and Kosche, Maria and Ko{\ss}, Tore and Manea, Florin and Siemer, Stefan},
  title =	{{The Edit Distance to k-Subsequence Universality}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.25},
  URN =		{urn:nbn:de:0030-drops-136705},
  doi =		{10.4230/LIPIcs.STACS.2021.25},
  annote =	{Keywords: Subsequence, Scattered factor, Subword, Universality, k-subsequence universality, Edit distance, Efficient algorithms}
}
Document
Efficiently Testing Simon’s Congruence

Authors: Paweł Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Simon’s congruence ∼_k is a relation on words defined by Imre Simon in the 1970s and intensely studied since then. This congruence was initially used in connection to piecewise testable languages, but also found many applications in, e.g., learning theory, databases theory, or linguistics. The ∼_k-relation is defined as follows: two words are ∼_k-congruent if they have the same set of subsequences of length at most k. A long standing open problem, stated already by Simon in his initial works on this topic, was to design an algorithm which computes, given two words s and t, the largest k for which s∼_k t. We propose the first algorithm solving this problem in linear time O(|s|+|t|) when the input words are over the integer alphabet {1,…,|s|+|t|} (or other alphabets which can be sorted in linear time). Our approach can be extended to an optimal algorithm in the case of general alphabets as well. To achieve these results, we introduce a novel data-structure, called Simon-Tree, which allows us to construct a natural representation of the equivalence classes induced by ∼_k on the set of suffixes of a word, for all k ≥ 1. We show that such a tree can be constructed for an input word in linear time. Then, when working with two words s and t, we compute their respective Simon-Trees and efficiently build a correspondence between the nodes of these trees. This correspondence, which can also be constructed in linear time O(|s|+|t|), allows us to retrieve the largest k for which s∼_k t.

Cite as

Paweł Gawrychowski, Maria Kosche, Tore Koß, Florin Manea, and Stefan Siemer. Efficiently Testing Simon’s Congruence. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 34:1-34:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gawrychowski_et_al:LIPIcs.STACS.2021.34,
  author =	{Gawrychowski, Pawe{\l} and Kosche, Maria and Ko{\ss}, Tore and Manea, Florin and Siemer, Stefan},
  title =	{{Efficiently Testing Simon’s Congruence}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{34:1--34:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.34},
  URN =		{urn:nbn:de:0030-drops-136796},
  doi =		{10.4230/LIPIcs.STACS.2021.34},
  annote =	{Keywords: Simon’s congruence, Subsequence, Scattered factor, Efficient algorithms}
}
Document
Online Strip Packing with Polynomial Migration

Authors: Klaus Jansen, Kim-Manuel Klein, Maria Kosche, and Leon Ladewig

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We consider the relaxed online strip packing problem, where rectangular items arrive online and have to be packed into a strip of fixed width such that the packing height is minimized. Thereby, repacking of previously packed items is allowed. The amount of repacking is measured by the migration factor, defined as the total size of repacked items divided by the size of the arriving item. First, we show that no algorithm with constant migration factor can produce solutions with asymptotic ratio better than 4/3. Against this background, we allow amortized migration, i.e. to save migration for a later time step. As a main result, we present an AFPTAS with asymptotic ratio 1 + O(epsilon) for any epsilon > 0 and amortized migration factor polynomial in 1/epsilon. To our best knowledge, this is the first algorithm for online strip packing considered in a repacking model.

Cite as

Klaus Jansen, Kim-Manuel Klein, Maria Kosche, and Leon Ladewig. Online Strip Packing with Polynomial Migration. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.APPROX-RANDOM.2017.13,
  author =	{Jansen, Klaus and Klein, Kim-Manuel and Kosche, Maria and Ladewig, Leon},
  title =	{{Online Strip Packing with Polynomial Migration}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.13},
  URN =		{urn:nbn:de:0030-drops-75620},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.13},
  annote =	{Keywords: strip packing, bin packing, online algorithms, migration factor}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail