Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Louis Esperet, Nathaniel Harms, and Andrey Kupavskii. Sketching Distances in Monotone Graph Classes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{esperet_et_al:LIPIcs.APPROX/RANDOM.2022.18, author = {Esperet, Louis and Harms, Nathaniel and Kupavskii, Andrey}, title = {{Sketching Distances in Monotone Graph Classes}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)}, pages = {18:1--18:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-249-5}, ISSN = {1868-8969}, year = {2022}, volume = {245}, editor = {Chakrabarti, Amit and Swamy, Chaitanya}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.18}, URN = {urn:nbn:de:0030-drops-171406}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2022.18}, annote = {Keywords: adjacency labelling, informative labelling, distance sketching, adjacency sketching, communication complexity} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Nóra Frankl and Andrey Kupavskii. Almost Sharp Bounds on the Number of Discrete Chains in the Plane. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 48:1-48:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{frankl_et_al:LIPIcs.SoCG.2020.48, author = {Frankl, N\'{o}ra and Kupavskii, Andrey}, title = {{Almost Sharp Bounds on the Number of Discrete Chains in the Plane}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {48:1--48:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.48}, URN = {urn:nbn:de:0030-drops-122064}, doi = {10.4230/LIPIcs.SoCG.2020.48}, annote = {Keywords: unit distance problem, unit distance graphs, discrete chains} }
Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)
Radoslav Fulek, Bernd Gärtner, Andrey Kupavskii, Pavel Valtr, and Uli Wagner. The Crossing Tverberg Theorem. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 38:1-38:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{fulek_et_al:LIPIcs.SoCG.2019.38, author = {Fulek, Radoslav and G\"{a}rtner, Bernd and Kupavskii, Andrey and Valtr, Pavel and Wagner, Uli}, title = {{The Crossing Tverberg Theorem}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {38:1--38:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.38}, URN = {urn:nbn:de:0030-drops-104423}, doi = {10.4230/LIPIcs.SoCG.2019.38}, annote = {Keywords: Discrete geometry, Tverberg theorem, Crossing Tverberg theorem} }
Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)
Andrey Kupavskii, Nabil Mustafa, and János Pach. New Lower Bounds for epsilon-Nets. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 54:1-54:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{kupavskii_et_al:LIPIcs.SoCG.2016.54, author = {Kupavskii, Andrey and Mustafa, Nabil and Pach, J\'{a}nos}, title = {{New Lower Bounds for epsilon-Nets}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {54:1--54:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.54}, URN = {urn:nbn:de:0030-drops-59467}, doi = {10.4230/LIPIcs.SoCG.2016.54}, annote = {Keywords: epsilon-nets; lower bounds; geometric set systems; shallow-cell complexity; half-spaces} }
Feedback for Dagstuhl Publishing