Search Results

Documents authored by Kurita, Kazuhiro


Document
On the Complexity of Minimising the Moving Distance for Dispersing Objects

Authors: Nicolás Honorato-Droguett, Kazuhiro Kurita, Tesshu Hanaka, and Hirotaka Ono

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We study Geometric Graph Edit Distance (GGED), a graph-editing model to compute the minimum edit distance of intersection graphs that uses moving objects as an edit operation. We first show an O(n log n)-time algorithm that minimises the total moving distance to disperse unit intervals. This algorithm is applied to render a given unit interval graph (i) edgeless, (ii) acyclic and (iii) k-clique-free. We next show that GGED becomes strongly NP-hard when rendering a weighted interval graph (i) edgeless, (ii) acyclic and (iii) k-clique-free. Lastly, we prove that minimising the maximum moving distance for rendering a unit disk graph edgeless is strongly NP-hard over the L₁ and L₂ distances.

Cite as

Nicolás Honorato-Droguett, Kazuhiro Kurita, Tesshu Hanaka, and Hirotaka Ono. On the Complexity of Minimising the Moving Distance for Dispersing Objects. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{honoratodroguett_et_al:LIPIcs.WADS.2025.36,
  author =	{Honorato-Droguett, Nicol\'{a}s and Kurita, Kazuhiro and Hanaka, Tesshu and Ono, Hirotaka},
  title =	{{On the Complexity of Minimising the Moving Distance for Dispersing Objects}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.36},
  URN =		{urn:nbn:de:0030-drops-242673},
  doi =		{10.4230/LIPIcs.WADS.2025.36},
  annote =	{Keywords: Intersection graphs, Optimisation, Graph modification}
}
Document
Research
Designing Output Sensitive Algorithms for Subgraph Enumeration

Authors: Alessio Conte, Kazuhiro Kurita, Andrea Marino, Giulia Punzi, Takeaki Uno, and Kunihiro Wasa

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
The enumeration of all subgraphs respecting some structural property is a fundamental task in theoretical computer science, with practical applications in many branches of data mining and network analysis. It is often of interest to only consider solutions (subgraphs) that are maximal under inclusion, and to achieve output-sensitive complexity, i.e., bounding the running time with respect to the number of subgraphs produced. In this paper, we provide a survey of techniques for designing output-sensitive algorithms for subgraph enumeration, including partition-based approaches such as flashlight search, solution-graph traversal methods such as reverse search, and cost amortization strategies such as push-out amortization. We also briefly discuss classes of efficiency, hardness of enumeration, and variants such as approximate enumeration. The paper is meant as an accessible handbook for learning the basics of the field and as a practical reference for selecting state-of-the-art subgraph enumeration strategies fitting to one’s needs.

Cite as

Alessio Conte, Kazuhiro Kurita, Andrea Marino, Giulia Punzi, Takeaki Uno, and Kunihiro Wasa. Designing Output Sensitive Algorithms for Subgraph Enumeration. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 19:1-19:40, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{conte_et_al:OASIcs.Grossi.19,
  author =	{Conte, Alessio and Kurita, Kazuhiro and Marino, Andrea and Punzi, Giulia and Uno, Takeaki and Wasa, Kunihiro},
  title =	{{Designing Output Sensitive Algorithms for Subgraph Enumeration}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{19:1--19:40},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.19},
  URN =		{urn:nbn:de:0030-drops-238180},
  doi =		{10.4230/OASIcs.Grossi.19},
  annote =	{Keywords: Graph algorithms, Graph enumeration, Output sensitive enumeration}
}
Document
Spanner Enumeration for Temporal Graphs

Authors: Kazuhiro Kurita, Andrea Marino, Jason Schoeters, and Takeaki Uno

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
A spanner of a temporal graph is a subset of edges that preserves connectivity over time between vertices. A minimal spanner is one in which no additional edges can be removed without breaking this connectivity. Our focus is on enumerating minimal spanners for a given temporal graph. We explore several variations of this problem based on the type of connectivity that must be maintained, ranging from one-to-all connectivity to one-to-all-to-one, many-to-all, and finally all-to-all connectivity. We establish that these problems become progressively harder: (i) We present a polynomial-delay enumeration algorithm for one-to-all connectivity; (ii) We prove Dual-hardness for both one-to-all-to-one and many-to-all connectivity, even in the restricted case of two-to-all; (iii) Finally, for all-to-all connectivity, we show that enumeration cannot be performed in output-polynomial time unless P = NP.

Cite as

Kazuhiro Kurita, Andrea Marino, Jason Schoeters, and Takeaki Uno. Spanner Enumeration for Temporal Graphs. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kurita_et_al:LIPIcs.SAND.2025.9,
  author =	{Kurita, Kazuhiro and Marino, Andrea and Schoeters, Jason and Uno, Takeaki},
  title =	{{Spanner Enumeration for Temporal Graphs}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.9},
  URN =		{urn:nbn:de:0030-drops-230621},
  doi =		{10.4230/LIPIcs.SAND.2025.9},
  annote =	{Keywords: temporal graphs, temporal spanners, one-to-all connectivity, all-to-all connectivity enumeration, NP-completeness, Dual-hardness, binary partition tree, flashlight search, polynomial delay}
}
Document
Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids

Authors: Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Finding a maximum cardinality common independent set in two matroids (also known as Matroid Intersection) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an "intersection" of these problems: Given two matroids and a threshold τ, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least τ. We show that this problem can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all maximal common independent sets of two matroids in non-increasing order of their cardinalities.

Cite as

Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa. Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 58:1-58:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.MFCS.2023.58,
  author =	{Kobayashi, Yasuaki and Kurita, Kazuhiro and Wasa, Kunihiro},
  title =	{{Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{58:1--58:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.58},
  URN =		{urn:nbn:de:0030-drops-185921},
  doi =		{10.4230/LIPIcs.MFCS.2023.58},
  annote =	{Keywords: Polynomial-delay enumeration, Ranked Enumeration, Matroid intersection, Reverse search}
}
Document
Optimal LZ-End Parsing Is Hard

Authors: Hideo Bannai, Mitsuru Funakoshi, Kazuhiro Kurita, Yuto Nakashima, Kazuhisa Seto, and Takeaki Uno

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
LZ-End is a variant of the well-known Lempel-Ziv parsing family such that each phrase of the parsing has a previous occurrence, with the additional constraint that the previous occurrence must end at the end of a previous phrase. LZ-End was initially proposed as a greedy parsing, where each phrase is determined greedily from left to right, as the longest factor that satisfies the above constraint [Kreft & Navarro, 2010]. In this work, we consider an optimal LZ-End parsing that has the minimum number of phrases in such parsings. We show that a decision version of computing the optimal LZ-End parsing is NP-complete by showing a reduction from the vertex cover problem. Moreover, we give a MAX-SAT formulation for the optimal LZ-End parsing adapting an approach for computing various NP-hard repetitiveness measures recently presented by [Bannai et al., 2022]. We also consider the approximation ratio of the size of greedy LZ-End parsing to the size of the optimal LZ-End parsing, and give a lower bound of the ratio which asymptotically approaches 2.

Cite as

Hideo Bannai, Mitsuru Funakoshi, Kazuhiro Kurita, Yuto Nakashima, Kazuhisa Seto, and Takeaki Uno. Optimal LZ-End Parsing Is Hard. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 3:1-3:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:LIPIcs.CPM.2023.3,
  author =	{Bannai, Hideo and Funakoshi, Mitsuru and Kurita, Kazuhiro and Nakashima, Yuto and Seto, Kazuhisa and Uno, Takeaki},
  title =	{{Optimal LZ-End Parsing Is Hard}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{3:1--3:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.3},
  URN =		{urn:nbn:de:0030-drops-179571},
  doi =		{10.4230/LIPIcs.CPM.2023.3},
  annote =	{Keywords: Data Compression, LZ-End, Repetitiveness measures}
}
Document
Efficient Enumerations for Minimal Multicuts and Multiway Cuts

Authors: Kazuhiro Kurita and Yasuaki Kobayashi

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Let G = (V, E) be an undirected graph and let B ⊆ V × V be a set of terminal pairs. A node/edge multicut is a subset of vertices/edges of G whose removal destroys all the paths between every terminal pair in B. The problem of computing a minimum node/edge multicut is NP-hard and extensively studied from several viewpoints. In this paper, we study the problem of enumerating all minimal node multicuts. We give an incremental polynomial delay enumeration algorithm for minimal node multicuts, which extends an enumeration algorithm due to Khachiyan et al. (Algorithmica, 2008) for minimal edge multicuts. Important special cases of node/edge multicuts are node/edge multiway cuts, where the set of terminal pairs contains every pair of vertices in some subset T ⊆ V, that is, B = T × T. We improve the running time bound for this special case: We devise a polynomial delay and exponential space enumeration algorithm for minimal node multiway cuts and a polynomial delay and space enumeration algorithm for minimal edge multiway cuts.

Cite as

Kazuhiro Kurita and Yasuaki Kobayashi. Efficient Enumerations for Minimal Multicuts and Multiway Cuts. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 60:1-60:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kurita_et_al:LIPIcs.MFCS.2020.60,
  author =	{Kurita, Kazuhiro and Kobayashi, Yasuaki},
  title =	{{Efficient Enumerations for Minimal Multicuts and Multiway Cuts}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{60:1--60:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.60},
  URN =		{urn:nbn:de:0030-drops-127272},
  doi =		{10.4230/LIPIcs.MFCS.2020.60},
  annote =	{Keywords: Multicuts, Multiway cuts, Enumeration algorithms}
}
Document
Finding the Anticover of a String

Authors: Mai Alzamel, Alessio Conte, Shuhei Denzumi, Roberto Grossi, Costas S. Iliopoulos, Kazuhiro Kurita, and Kunihiro Wasa

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
A k-anticover of a string x is a set of pairwise distinct factors of x of equal length k, such that every symbol of x is contained into an occurrence of at least one of those factors. The existence of a k-anticover can be seen as a notion of non-redundancy, which has application in computational biology, where they are associated with various non-regulatory mechanisms. In this paper we address the complexity of the problem of finding a k-anticover of a string x if it exists, showing that the decision problem is NP-complete on general strings for k ≥ 3. We also show that the problem admits a polynomial-time solution for k=2. For unbounded k, we provide an exact exponential algorithm to find a k-anticover of a string of length n (or determine that none exists), which runs in O*(min {3^{(n-k)/3)}, ((k(k+1))/2)^{n/(k+1)) time using polynomial space.

Cite as

Mai Alzamel, Alessio Conte, Shuhei Denzumi, Roberto Grossi, Costas S. Iliopoulos, Kazuhiro Kurita, and Kunihiro Wasa. Finding the Anticover of a String. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 2:1-2:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alzamel_et_al:LIPIcs.CPM.2020.2,
  author =	{Alzamel, Mai and Conte, Alessio and Denzumi, Shuhei and Grossi, Roberto and Iliopoulos, Costas S. and Kurita, Kazuhiro and Wasa, Kunihiro},
  title =	{{Finding the Anticover of a String}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{2:1--2:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.2},
  URN =		{urn:nbn:de:0030-drops-121270},
  doi =		{10.4230/LIPIcs.CPM.2020.2},
  annote =	{Keywords: Anticover, String algorithms, Stringology, NP-complete}
}
Document
Efficient Enumeration of Dominating Sets for Sparse Graphs

Authors: Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
A dominating set D of a graph G is a set of vertices such that any vertex in G is in D or its neighbor is in D. Enumeration of minimal dominating sets in a graph is one of central problems in enumeration study since enumeration of minimal dominating sets corresponds to enumeration of minimal hypergraph transversal. However, enumeration of dominating sets including non-minimal ones has not been received much attention. In this paper, we address enumeration problems for dominating sets from sparse graphs which are degenerate graphs and graphs with large girth, and we propose two algorithms for solving the problems. The first algorithm enumerates all the dominating sets for a k-degenerate graph in O(k) time per solution using O(n + m) space, where n and m are respectively the number of vertices and edges in an input graph. That is, the algorithm is optimal for graphs with constant degeneracy such as trees, planar graphs, H-minor free graphs with some fixed H. The second algorithm enumerates all the dominating sets in constant time per solution for input graphs with girth at least nine.

Cite as

Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient Enumeration of Dominating Sets for Sparse Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kurita_et_al:LIPIcs.ISAAC.2018.8,
  author =	{Kurita, Kazuhiro and Wasa, Kunihiro and Arimura, Hiroki and Uno, Takeaki},
  title =	{{Efficient Enumeration of Dominating Sets for Sparse Graphs}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.8},
  URN =		{urn:nbn:de:0030-drops-99560},
  doi =		{10.4230/LIPIcs.ISAAC.2018.8},
  annote =	{Keywords: Enumeration algorithm, polynomial amortized time, dominating set, girth, degeneracy}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail