Search Results

Documents authored by Löbel, Fabian


Document
A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing

Authors: Fabian Löbel and Niels Lindner

Published in: OASIcs, Volume 137, 25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2025)


Abstract
We offer a geometric perspective on the problem of integrated periodic timetabling and passenger routing in public transport. Inside the space of periodic tensions, we single out those regions, where the same set of paths provides shortest passenger routes. This results in a polyhedral subdivision, which we combine with the known decomposition by polytropes. On each maximal region of the common refinement, the integrated problem is solvable in polynomial time. We transform these insights into a new geometry-driven primal heuristic, integrated tropical neighborhood search (ITNS). Computationally, we compare implementations of ITNS and the integrated (restricted) modulo network simplex algorithm on the TimPassLib benchmark set, and contribute better solutions in terms of total travel time for all but one of the twenty-five instances for which a proven optimal solution is not yet known.

Cite as

Fabian Löbel and Niels Lindner. A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing. In 25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2025). Open Access Series in Informatics (OASIcs), Volume 137, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lobel_et_al:OASIcs.ATMOS.2025.2,
  author =	{L\"{o}bel, Fabian and Lindner, Niels},
  title =	{{A Geometric Approach to Integrated Periodic Timetabling and Passenger Routing}},
  booktitle =	{25th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2025)},
  pages =	{2:1--2:19},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-404-8},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{137},
  editor =	{Sauer, Jonas and Schmidt, Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2025.2},
  URN =		{urn:nbn:de:0030-drops-247580},
  doi =		{10.4230/OASIcs.ATMOS.2025.2},
  annote =	{Keywords: Periodic Timetabling, Passenger Routing, Polyhedral Complexes}
}
Document
Solving the Electric Bus Scheduling Problem by an Integrated Flow and Set Partitioning Approach

Authors: Ralf Borndörfer, Andreas Löbel, Fabian Löbel, and Steffen Weider

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
Attractive and cost-efficient public transport requires solving computationally difficult optimization problems from network design to crew rostering. While great progress has been made in many areas, new requirements to handle increasingly complex constraints are constantly coming up. One such challenge is a new type of resource constraints that are used to deal with the state-of-charge of battery-electric vehicles, which have limited driving ranges and need to be recharged in-service. Resource constrained vehicle scheduling problems can classically be modelled in terms of either a resource constrained (multi-commodity) flow problem or in terms of a path-based set partition problem. We demonstrate how a novel integrated version of both formulations can be leveraged to solve resource constrained vehicle scheduling with replenishment in general and the electric bus scheduling problem in particular by Lagrangian relaxation and the proximal bundle method.

Cite as

Ralf Borndörfer, Andreas Löbel, Fabian Löbel, and Steffen Weider. Solving the Electric Bus Scheduling Problem by an Integrated Flow and Set Partitioning Approach. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 11:1-11:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{borndorfer_et_al:OASIcs.ATMOS.2024.11,
  author =	{Bornd\"{o}rfer, Ralf and L\"{o}bel, Andreas and L\"{o}bel, Fabian and Weider, Steffen},
  title =	{{Solving the Electric Bus Scheduling Problem by an Integrated Flow and Set Partitioning Approach}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{11:1--11:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.11},
  URN =		{urn:nbn:de:0030-drops-211992},
  doi =		{10.4230/OASIcs.ATMOS.2024.11},
  annote =	{Keywords: Electric Bus Scheduling, Electric Vehicle Scheduling, Non-linear Charging, Multi-commodity Flow, Set Partition, Lagrangian Relaxation, Proximal Bundle Method}
}
Document
Short Paper
Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates (Short Paper)

Authors: Fabian Löbel, Ralf Borndörfer, and Steffen Weider

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
The ongoing electrification of logistics systems and vehicle fleets increases the complexity of associated vehicle routing or scheduling problems. Battery-powered vehicles have to be scheduled to recharge in-service, and the relationship between charging time and replenished driving range is non-linear. In order to access the powerful toolkit offered by mixed-integer and linear programming techniques, this battery behavior has to be linearized. Moreover, as electric fleets grow, power draw peaks have to be avoided to save on electricity costs or to adhere to hard grid capacity limits, such that it becomes desirable to keep recharge rates dynamic. We suggest a novel linearization approach of battery charging behavior for vehicle scheduling problems, in which the recharge rates are optimization variables and not model parameters.

Cite as

Fabian Löbel, Ralf Borndörfer, and Steffen Weider. Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates (Short Paper). In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 15:1-15:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lobel_et_al:OASIcs.ATMOS.2023.15,
  author =	{L\"{o}bel, Fabian and Bornd\"{o}rfer, Ralf and Weider, Steffen},
  title =	{{Non-Linear Charge Functions for Electric Vehicle Scheduling with Dynamic Recharge Rates}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{15:1--15:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.15},
  URN =		{urn:nbn:de:0030-drops-187765},
  doi =		{10.4230/OASIcs.ATMOS.2023.15},
  annote =	{Keywords: Electric Vehicle Scheduling, Battery Powered Vehicles, Charging Process, Non-linear Charging, Recharge Modeling, Dynamic Recharge Rate}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail