Search Results

Documents authored by Mittal, Kunal


Document
Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning

Authors: Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We present a general framework for designing efficient algorithms for unsupervised learning problems, such as mixtures of Gaussians and subspace clustering. Our framework is based on a meta algorithm that learns arithmetic formulas in the presence of noise, using lower bounds. This builds upon the recent work of Garg, Kayal and Saha (FOCS '20), who designed such a framework for learning arithmetic formulas without any noise. A key ingredient of our meta algorithm is an efficient algorithm for a novel problem called Robust Vector Space Decomposition. We show that our meta algorithm works well when certain matrices have sufficiently large smallest non-zero singular values. We conjecture that this condition holds for smoothed instances of our problems, and thus our framework would yield efficient algorithms for these problems in the smoothed setting.

Cite as

Pritam Chandra, Ankit Garg, Neeraj Kayal, Kunal Mittal, and Tanmay Sinha. Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chandra_et_al:LIPIcs.ITCS.2024.25,
  author =	{Chandra, Pritam and Garg, Ankit and Kayal, Neeraj and Mittal, Kunal and Sinha, Tanmay},
  title =	{{Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-195537},
  doi =		{10.4230/LIPIcs.ITCS.2024.25},
  annote =	{Keywords: Arithmetic Circuits, Robust Vector Space Decomposition, Subspace Clustering, Mixtures of Gaussians}
}
Document
RANDOM
Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs

Authors: Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We prove that for every 3-player (3-prover) game G with value less than one, whose query distribution has the support S = {(1,0,0), (0,1,0), (0,0,1)} of Hamming weight one vectors, the value of the n-fold parallel repetition G^{⊗n} decays polynomially fast to zero; that is, there is a constant c = c(G) > 0 such that the value of the game G^{⊗n} is at most n^{-c}. Following the recent work of Girish, Holmgren, Mittal, Raz and Zhan (STOC 2022), our result is the missing piece that implies a similar bound for a much more general class of multiplayer games: For every 3-player game G over binary questions and arbitrary answer lengths, with value less than 1, there is a constant c = c(G) > 0 such that the value of the game G^{⊗n} is at most n^{-c}. Our proof technique is new and requires many new ideas. For example, we make use of the Level-k inequalities from Boolean Fourier Analysis, which, to the best of our knowledge, have not been explored in this context prior to our work.

Cite as

Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan. Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.APPROX/RANDOM.2022.6,
  author =	{Girish, Uma and Mittal, Kunal and Raz, Ran and Zhan, Wei},
  title =	{{Polynomial Bounds on Parallel Repetition for All 3-Player Games with Binary Inputs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.6},
  URN =		{urn:nbn:de:0030-drops-171286},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.6},
  annote =	{Keywords: Parallel repetition, Multi-prover games, Fourier analysis}
}
Document
RANDOM
Parallel Repetition for the GHZ Game: A Simpler Proof

Authors: Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the n-fold GHZ game is at most n^{-Ω(1)}. This was first established by Holmgren and Raz [Holmgren and Raz, 2020]. We present a new proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier analysis. The GHZ game [Greenberger et al., 1989] has played a foundational role in the understanding of quantum information theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1. It is possible that improved parallel repetition bounds may find applications in this setting. Recently, Dinur, Harsha, Venkat, and Yuen [Dinur et al., 2017] highlighted the GHZ game as a simple three-player game, which is in some sense maximally far from the class of multi-player games whose behavior under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving this would shed light on parallel repetition for general multi-player (multi-prover) games.

Cite as

Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan. Parallel Repetition for the GHZ Game: A Simpler Proof. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.APPROX/RANDOM.2021.62,
  author =	{Girish, Uma and Holmgren, Justin and Mittal, Kunal and Raz, Ran and Zhan, Wei},
  title =	{{Parallel Repetition for the GHZ Game: A Simpler Proof}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.62},
  URN =		{urn:nbn:de:0030-drops-147551},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.62},
  annote =	{Keywords: Parallel Repetition, GHZ, Polynomial, Multi-player}
}
Document
Block Rigidity: Strong Multiplayer Parallel Repetition Implies Super-Linear Lower Bounds for Turing Machines

Authors: Kunal Mittal and Ran Raz

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We prove that a sufficiently strong parallel repetition theorem for a special case of multiplayer (multiprover) games implies super-linear lower bounds for multi-tape Turing machines with advice. To the best of our knowledge, this is the first connection between parallel repetition and lower bounds for time complexity and the first major potential implication of a parallel repetition theorem with more than two players. Along the way to proving this result, we define and initiate a study of block rigidity, a weakening of Valiant’s notion of rigidity [Valiant, 1977]. While rigidity was originally defined for matrices, or, equivalently, for (multi-output) linear functions, we extend and study both rigidity and block rigidity for general (multi-output) functions. Using techniques of Paul, Pippenger, Szemerédi and Trotter [Paul et al., 1983], we show that a block-rigid function cannot be computed by multi-tape Turing machines that run in linear (or slightly super-linear) time, even in the non-uniform setting, where the machine gets an arbitrary advice tape. We then describe a class of multiplayer games, such that, a sufficiently strong parallel repetition theorem for that class of games implies an explicit block-rigid function. The games in that class have the following property that may be of independent interest: for every random string for the verifier (which, in particular, determines the vector of queries to the players), there is a unique correct answer for each of the players, and the verifier accepts if and only if all answers are correct. We refer to such games as independent games. The theorem that we need is that parallel repetition reduces the value of games in this class from v to v^Ω(n), where n is the number of repetitions. As another application of block rigidity, we show conditional size-depth tradeoffs for boolean circuits, where the gates compute arbitrary functions over large sets.

Cite as

Kunal Mittal and Ran Raz. Block Rigidity: Strong Multiplayer Parallel Repetition Implies Super-Linear Lower Bounds for Turing Machines. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 71:1-71:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mittal_et_al:LIPIcs.ITCS.2021.71,
  author =	{Mittal, Kunal and Raz, Ran},
  title =	{{Block Rigidity: Strong Multiplayer Parallel Repetition Implies Super-Linear Lower Bounds for Turing Machines}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{71:1--71:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.71},
  URN =		{urn:nbn:de:0030-drops-136101},
  doi =		{10.4230/LIPIcs.ITCS.2021.71},
  annote =	{Keywords: Block-rigidity, Matrix Rigidity, Parallel Repetition, Size-depth tradeoffs, Turing Machines}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail