Search Results

Documents authored by Nanongkai, Danupon


Document
Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights

Authors: Vikrant Ashvinkumar, Aaron Bernstein, Nairen Cao, Christoph Grunau, Bernhard Haeupler, Yonggang Jiang, Danupon Nanongkai, and Hsin-Hao Su

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths when edges can have negative integer weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in all these settings to n^{o(1)} calls to any SSSP algorithm that works on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source. More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with - W_{SSSP}(m,n)n^{o(1)} work and S_{SSSP}(m,n)n^{o(1)} span, given access to a non-negative-weight SSSP algorithm with W_{SSSP}(m,n) work and S_{SSSP}(m,n) span in the parallel model, and - T_{SSSP}(n,D)n^{o(1)} rounds, given access to a non-negative-weight SSSP algorithm that takes T_{SSSP}(n,D) rounds in CONGEST, and - Q_{SSSP}(m,n)n^{o(1)} quantum edge queries, given access to a non-negative-weight SSSP algorithm that takes Q_{SSSP}(m,n) queries in the quantum edge query model. This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [Bernstein et al., 2022], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms for negative-weight SSSP with - m^{1+o(1)} work and n^{1/2+o(1)} span in the parallel model, and - (n^{2/5}D^{2/5} + √n + D)n^{o(1)} rounds in CONGEST, and - m^{1/2}n^{1/2+o(1)} quantum queries to the adjacency list or n^{1.5+o(1)} quantum queries to the adjacency matrix. Up to a n^{o(1)} factor, the parallel and distributed results match the current best upper bounds for reachability [Jambulapati et al., 2019; Cao et al., 2021]. Consequently, any improvement to negative-weight SSSP in these models beyond the n^{o(1)} factor necessitates an improvement to the current best bounds for reachability. The quantum result matches the lower bound up to an n^{o(1)} factor [Aija Berzina et al., 2004]. Our main technical contribution is an efficient reduction from computing a low-diameter decomposition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models, and been rather unstudied in quantum models. The directed LDD is a crucial step of the sequential algorithm in [Bernstein et al., 2022], and we think that its applications to other problems in parallel and distributed models are far from being exhausted. Other ingredients of our results include altering the recursion structure of the scaling algorithm in [Bernstein et al., 2022] to surmount difficulties that arise in these models, and also an efficient reduction from computing strongly connected components to computations of SSSP with a virtual source in CONGEST. The latter result answers a question posed in [Bernstein and Nanongkai, 2019] in the negative.

Cite as

Vikrant Ashvinkumar, Aaron Bernstein, Nairen Cao, Christoph Grunau, Bernhard Haeupler, Yonggang Jiang, Danupon Nanongkai, and Hsin-Hao Su. Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 13:1-13:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ashvinkumar_et_al:LIPIcs.ESA.2024.13,
  author =	{Ashvinkumar, Vikrant and Bernstein, Aaron and Cao, Nairen and Grunau, Christoph and Haeupler, Bernhard and Jiang, Yonggang and Nanongkai, Danupon and Su, Hsin-Hao},
  title =	{{Parallel, Distributed, and Quantum Exact Single-Source Shortest Paths with Negative Edge Weights}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{13:1--13:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.13},
  URN =		{urn:nbn:de:0030-drops-210849},
  doi =		{10.4230/LIPIcs.ESA.2024.13},
  annote =	{Keywords: Parallel algorithm, distributed algorithm, shortest paths}
}
Document
Invited Talk
Cross-Paradigm Graph Algorithms (Invited Talk)

Authors: Danupon Nanongkai

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A goal of the theory of graph algorithms is algorithmic techniques that enable computing devices to process graph data with little resources (time, space, communication overhead, etc.). This led to extensive studies of graph algorithms in various models of computation (sequential algorithms, distributed algorithms, streaming algorithms, etc.) by many sub-communities. Cross-paradigm graph algorithms is an effort to attack the same problem in many models of computation simultaneously, with the goal to generate new insights that may not emerge from the isolated viewpoint of a single model and to ultimately develop techniques that can be used to solve graph problems near-optimally across many models of computation. In this talk, I will discuss some recent advances in graph algorithmic techniques for basic graph problems (e.g. minimum cut, shortest path, and maximum flow) in connection to this research program, especially some insights that led to cross-paradigm algorithms and to answering notorious open questions. No background will be assumed from the audience beyond familiarity with textbook graph algorithms.

Cite as

Danupon Nanongkai. Cross-Paradigm Graph Algorithms (Invited Talk). In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{nanongkai:LIPIcs.ICALP.2024.3,
  author =	{Nanongkai, Danupon},
  title =	{{Cross-Paradigm Graph Algorithms}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.3},
  URN =		{urn:nbn:de:0030-drops-201467},
  doi =		{10.4230/LIPIcs.ICALP.2024.3},
  annote =	{Keywords: Graph Algorithms and Complexity, Efficient Algorithms, Models of Computation}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary

Authors: Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Designing efficient dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms and has witnessed many exciting recent developments in, e.g., dynamic matching (Wajc STOC'20) and decremental shortest paths (Chuzhoy and Khanna STOC'19). Compared to other graph primitives (e.g. spanning trees and matchings), designing such algorithms for graph spanners and (more broadly) graph sparsifiers poses a unique challenge since there is no fast deterministic algorithm known for static computation and the lack of a way to adjust the output slowly (known as "small recourse/replacements"). This paper presents the first non-trivial efficient adaptive algorithms for maintaining many sparsifiers against an adaptive adversary. Specifically, we present algorithms that maintain 1) a polylog(n)-spanner of size Õ(n) in polylog(n) amortized update time, 2) an O(k)-approximate cut sparsifier of size Õ(n) in Õ(n^{1/k}) amortized update time, and 3) a polylog(n)-approximate spectral sparsifier in polylog(n) amortized update time. Our bounds are the first non-trivial ones even when only the recourse is concerned. Our results hold even against a stronger adversary, who can access the random bits previously used by the algorithms and the amortized update time of all algorithms can be made worst-case by paying sub-polynomial factors. Our spanner result resolves an open question by Ahmed et al. (2019) and our results and techniques imply additional improvements over existing results, including (i) answering open questions about decremental single-source shortest paths by Chuzhoy and Khanna (STOC'19) and Gutenberg and Wulff-Nilsen (SODA'20), implying a nearly-quadratic time algorithm for approximating minimum-cost unit-capacity flow and (ii) de-amortizing a result of Abraham et al. (FOCS'16) for dynamic spectral sparsifiers. Our results are based on two novel techniques. The first technique is a generic black-box reduction that allows us to assume that the graph is initially an expander with almost uniform-degree and, more importantly, stays as an almost uniform-degree expander while undergoing only edge deletions. The second technique is called proactive resampling: here we constantly re-sample parts of the input graph so that, independent of an adversary’s computational power, a desired structure of the underlying graph can be always maintained. Despite its simplicity, the analysis of this sampling scheme is far from trivial, because the adversary can potentially create dependencies between the random choices used by the algorithm. We believe these two techniques could be useful for developing other adaptive algorithms.

Cite as

Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bernstein_et_al:LIPIcs.ICALP.2022.20,
  author =	{Bernstein, Aaron and van den Brand, Jan and Probst Gutenberg, Maximilian and Nanongkai, Danupon and Saranurak, Thatchaphol and Sidford, Aaron and Sun, He},
  title =	{{Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.20},
  URN =		{urn:nbn:de:0030-drops-163611},
  doi =		{10.4230/LIPIcs.ICALP.2022.20},
  annote =	{Keywords: dynamic graph algorithm, adaptive adversary, spanner, sparsifier}
}
Document
Track A: Algorithms, Complexity and Games
Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver

Authors: Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak, Pattara Sukprasert, and Sorrachai Yingchareonthawornchai

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In the k-edge-connected spanning subgraph (kECSS) problem, our goal is to compute a minimum-cost sub-network that is resilient against up to k link failures: Given an n-node m-edge graph with a cost function on the edges, our goal is to compute a minimum-cost k-edge-connected spanning subgraph. This NP-hard problem generalizes the minimum spanning tree problem and is the "uniform case" of a much broader class of survival network design problems (SNDP). A factor of two has remained the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even for a special case of 2ECSS. The fastest 2-approximation algorithm is however rather slow, taking O(mn k) time [Khuller, Vishkin, STOC'92]. A faster time complexity of O(n²) can be obtained, but with a higher approximation guarantee of (2k-1) [Gabow, Goemans, Williamson, IPCO'93]. Our main contribution is an algorithm that (1+ε)-approximates the optimal fractional solution in Õ(m/ε²) time (independent of k), which can be turned into a (2+ε) approximation algorithm that runs in time Õ(m/(ε²) + {k²n^{1.5}}/ε²) for (integral) kECSS; this improves the running time of the aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.

Cite as

Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai, Thatchaphol Saranurak, Pattara Sukprasert, and Sorrachai Yingchareonthawornchai. Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chalermsook_et_al:LIPIcs.ICALP.2022.37,
  author =	{Chalermsook, Parinya and Huang, Chien-Chung and Nanongkai, Danupon and Saranurak, Thatchaphol and Sukprasert, Pattara and Yingchareonthawornchai, Sorrachai},
  title =	{{Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.37},
  URN =		{urn:nbn:de:0030-drops-163785},
  doi =		{10.4230/LIPIcs.ICALP.2022.37},
  annote =	{Keywords: Approximation Algorithms, Data Structures}
}
Document
Equivalence Classes and Conditional Hardness in Massively Parallel Computations

Authors: Danupon Nanongkai and Michele Scquizzato

Published in: LIPIcs, Volume 153, 23rd International Conference on Principles of Distributed Systems (OPODIS 2019)


Abstract
The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern large-scale data processing frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called the one cycle vs. two cycles problem. This is unlike the traditional arguments based on conjectures about complexity classes (e.g., P ≠ NP), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds in the MPC model, denoted by MPC(o(log N)), and some standard classes concerning space complexity, namely L and NL, and suggest conjectures that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model.

Cite as

Danupon Nanongkai and Michele Scquizzato. Equivalence Classes and Conditional Hardness in Massively Parallel Computations. In 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 153, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{nanongkai_et_al:LIPIcs.OPODIS.2019.33,
  author =	{Nanongkai, Danupon and Scquizzato, Michele},
  title =	{{Equivalence Classes and Conditional Hardness in Massively Parallel Computations}},
  booktitle =	{23rd International Conference on Principles of Distributed Systems (OPODIS 2019)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-133-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{153},
  editor =	{Felber, Pascal and Friedman, Roy and Gilbert, Seth and Miller, Avery},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2019.33},
  URN =		{urn:nbn:de:0030-drops-118194},
  doi =		{10.4230/LIPIcs.OPODIS.2019.33},
  annote =	{Keywords: Massively parallel computation, conditional hardness, fine-grained complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail