Search Results

Documents authored by Paschos, Vangelis Th.


Document
The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet

Authors: Nicolas Boria, Laurent Gourvès, Vangelis Th. Paschos, and Jérôme Monnot

Published in: LIPIcs, Volume 201, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021)


Abstract
Given two strings A and B such that B is a permutation of A, the max duo-preservation string mapping (MPSM) problem asks to find a mapping π between them so as to preserve a maximum number of duos. A duo is any pair of consecutive characters in a string and it is preserved by π if its two consecutive characters in A are mapped to same two consecutive characters in B. This problem has received a growing attention in recent years, partly as an alternative way to produce approximation algorithms for its minimization counterpart, min common string partition, a widely studied problem due its applications in comparative genomics. Considering this favored field of application with short alphabet, it is surprising that MPSM^𝓁, the variant of MPSM with bounded alphabet, has received so little attention, with a single yet impressive work that provides a 2.67-approximation achieved in O(n) [Brubach, 2018], where n = |A| = |B|. Our work focuses on MPSM^𝓁, and our main contribution is the demonstration that this problem admits a Polynomial Time Approximation Scheme (PTAS) when 𝓁 = O(1). We also provide an alternate, somewhat simpler, proof of NP-hardness for this problem compared with the NP-hardness proof presented in [Haitao Jiang et al., 2012].

Cite as

Nicolas Boria, Laurent Gourvès, Vangelis Th. Paschos, and Jérôme Monnot. The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 201, pp. 5:1-5:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{boria_et_al:LIPIcs.WABI.2021.5,
  author =	{Boria, Nicolas and Gourv\`{e}s, Laurent and Paschos, Vangelis Th. and Monnot, J\'{e}r\^{o}me},
  title =	{{The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{5:1--5:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2021.5},
  URN =		{urn:nbn:de:0030-drops-143586},
  doi =		{10.4230/LIPIcs.WABI.2021.5},
  annote =	{Keywords: Maximum-Duo Preservation String Mapping, Bounded alphabet, Polynomial Time Approximation Scheme}
}
Document
New Algorithms for Mixed Dominating Set

Authors: Louis Dublois, Michael Lampis, and Vangelis Th. Paschos

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
A mixed dominating set is a set of vertices and edges that dominates all vertices and edges of a graph. We study the complexity of exact and parameterized algorithms for MDS, resolving some open questions. In particular, we settle the problem’s complexity parameterized by treewidth and pathwidth by giving an algorithm running in time O^*(5^{tw}) (improving the current best O^*(6^{tw})), and a lower bound showing that our algorithm cannot be improved under the SETH, even if parameterized by pathwidth (improving a lower bound of O^*((2-ε)^{pw})). Furthermore, by using a simple but so far overlooked observation on the structure of minimal solutions, we obtain branching algorithms which improve the best known FPT algorithm for this problem, from O^*(4.172^k) to O^*(3.510^k), and the best known exact algorithm, from O^*(2ⁿ) and exponential space, to O^*(1.912ⁿ) and polynomial space.

Cite as

Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. New Algorithms for Mixed Dominating Set. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dublois_et_al:LIPIcs.IPEC.2020.9,
  author =	{Dublois, Louis and Lampis, Michael and Paschos, Vangelis Th.},
  title =	{{New Algorithms for Mixed Dominating Set}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.9},
  URN =		{urn:nbn:de:0030-drops-133127},
  doi =		{10.4230/LIPIcs.IPEC.2020.9},
  annote =	{Keywords: FPT Algorithms, Exact Algorithms, Mixed Domination}
}
Document
Multistage Matchings

Authors: Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos

Published in: LIPIcs, Volume 101, 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)


Abstract
We consider a multistage version of the Perfect Matching problem which models the scenario where the costs of edges change over time and we seek to obtain a solution that achieves low total cost, while minimizing the number of changes from one instance to the next. Formally, we are given a sequence of edge-weighted graphs on the same set of vertices V, and are asked to produce a perfect matching in each instance so that the total edge cost plus the transition cost (the cost of exchanging edges), is minimized. This model was introduced by Gupta et al. (ICALP 2014), who posed as an open problem its approximability for bipartite instances. We completely resolve this question by showing that Minimum Multistage Perfect Matching (Min-MPM) does not admit an n^{1-epsilon}-approximation, even on bipartite instances with only two time steps. Motivated by this negative result, we go on to consider two variations of the problem. In Metric Minimum Multistage Perfect Matching problem (Metric-Min-MPM) we are promised that edge weights in each time step satisfy the triangle inequality. We show that this problem admits a 3-approximation when the number of time steps is 2 or 3. On the other hand, we show that even the metric case is APX-hard already for 2 time steps. We then consider the complementary maximization version of the problem, Maximum Multistage Perfect Matching problem (Max-MPM), where we seek to maximize the total profit of all selected edges plus the total number of non-exchanged edges. We show that Max-MPM is also APX-hard, but admits a constant factor approximation algorithm for any number of time steps.

Cite as

Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage Matchings. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 101, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bampis_et_al:LIPIcs.SWAT.2018.7,
  author =	{Bampis, Evripidis and Escoffier, Bruno and Lampis, Michael and Paschos, Vangelis Th.},
  title =	{{Multistage Matchings}},
  booktitle =	{16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-068-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{101},
  editor =	{Eppstein, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2018.7},
  URN =		{urn:nbn:de:0030-drops-88338},
  doi =		{10.4230/LIPIcs.SWAT.2018.7},
  annote =	{Keywords: Perfect Matching, Temporal Optimization, Multistage Optimization}
}
Document
Structural Parameters, Tight Bounds, and Approximation for (k,r)-Center

Authors: Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In (k,r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most k vertices (centers), so that all other vertices are at distance at most r from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any r>=1, we show an algorithm that solves the problem in O*((3r+1)^cw) time, where cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithm's performance. As a corollary, for r=1, this closes the gap that previously existed on the complexity of Dominating Set parameterized by cw. - We strengthen previously known FPT lower bounds, by showing that (k,r)-Center is W[1]-hard parameterized by the input graph's vertex cover (if edge weights are allowed), or feedback vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is 2^Theta(td^2) by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of k,r. In particular, we give algorithms which, for any epsilon>0, run in time O*((tw/epsilon)^O(tw)), O*((cw/epsilon)^O(cw)) and return a (k,(1+epsilon)r)-center, if a (k,r)-center exists, thus circumventing the problem's W-hardness.

Cite as

Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural Parameters, Tight Bounds, and Approximation for (k,r)-Center. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 50:1-50:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{katsikarelis_et_al:LIPIcs.ISAAC.2017.50,
  author =	{Katsikarelis, Ioannis and Lampis, Michael and Paschos, Vangelis Th.},
  title =	{{Structural Parameters, Tight Bounds, and Approximation for (k,r)-Center}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{50:1--50:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.50},
  URN =		{urn:nbn:de:0030-drops-82441},
  doi =		{10.4230/LIPIcs.ISAAC.2017.50},
  annote =	{Keywords: FPT algorithms, Approximation, Treewidth, Clique-width, Domination}
}
Document
Time-Approximation Trade-offs for Inapproximable Problems

Authors: Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos

Published in: LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)


Abstract
In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For MIN INDEPENDENT DOMINATING SET, MAX INDUCED PATH, FOREST and TREE, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly r^{n/r}. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For MAX MINIMAL VERTEX COVER we give a non-trivial sqrt{r}-approximation in time 2^{n/{r}}. We match this with a similarly tight result. We also give a log(r)-approximation for MIN ATSP in time 2^{n/r} and an r-approximation for MAX GRUNDY COLORING in time r^{n/r}. Furthermore, we show that MIN SET COVER exhibits a curious behavior in this super-polynomial setting: for any delta>0 it admits an m^delta-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail.

Cite as

Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-Approximation Trade-offs for Inapproximable Problems. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.STACS.2016.22,
  author =	{Bonnet, \'{E}douard and Lampis, Michael and Paschos, Vangelis Th.},
  title =	{{Time-Approximation Trade-offs for Inapproximable Problems}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{22:1--22:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Ollinger, Nicolas and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.22},
  URN =		{urn:nbn:de:0030-drops-57236},
  doi =		{10.4230/LIPIcs.STACS.2016.22},
  annote =	{Keywords: Algorithm, Complexity, Polynomial and Subexponential Approximation, Reduction, Inapproximability}
}
Document
Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse

Authors: Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos

Published in: LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)


Abstract
It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS'99), that MAX-CUT admits a PTAS on dense graphs, and more generally, MAX-k-CSP admits a PTAS on "dense" instances with Omega(n^k) constraints. In this paper we extend and generalize their exhaustive sampling approach, presenting a framework for (1-epsilon)-approximating any MAX-k-CSP problem in sub-exponential time while significantly relaxing the denseness requirement on the input instance. Specifically, we prove that for any constants delta in (0, 1] and epsilon > 0, we can approximate MAX-k-CSP problems with Omega(n^{k-1+delta}) constraints within a factor of (1-epsilon) in time 2^{O(n^{1-delta}*ln(n) / epsilon^3)}. The framework is quite general and includes classical optimization problems, such as MAX-CUT, MAX-DICUT, MAX-k-SAT, and (with a slight extension) k-DENSEST SUBGRAPH, as special cases. For MAX-CUT in particular (where k=2), it gives an approximation scheme that runs in time sub-exponential in n even for "almost-sparse" instances (graphs with n^{1+delta} edges). We prove that our results are essentially best possible, assuming the ETH. First, the density requirement cannot be relaxed further: there exists a constant r < 1 such that for all delta > 0, MAX-k-SAT instances with O(n^{k-1}) clauses cannot be approximated within a ratio better than r in time 2^{O(n^{1-delta})}. Second, the running time of our algorithm is almost tight for all densities. Even for MAX-CUT there exists r<1 such that for all delta' > delta >0, MAX-CUT instances with n^{1+delta} edges cannot be approximated within a ratio better than r in time 2^{n^{1-delta'}}.

Cite as

Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fotakis_et_al:LIPIcs.STACS.2016.37,
  author =	{Fotakis, Dimitris and Lampis, Michael and Paschos, Vangelis Th.},
  title =	{{Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Ollinger, Nicolas and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.37},
  URN =		{urn:nbn:de:0030-drops-57388},
  doi =		{10.4230/LIPIcs.STACS.2016.37},
  annote =	{Keywords: polynomial and subexponential approximation, sampling, randomized rounding}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail