Search Results

Documents authored by Pautet, Laurent


Document
RESCUE: Multi-Robot Planning Under Resource Uncertainty and Objective Criticality

Authors: Franco Cordeiro, Samuel Tardieu, and Laurent Pautet

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Robot planning in distributed systems, such as drone fleets performing active perception missions, presents complex challenges. These missions require cooperation to achieve objectives like collecting sensor data or capturing images. Multi-robot systems offer significant advantages, including faster execution and increased robustness, as robots can compensate for individual failures. However, resource costs, affected by environmental factors such as wind or terrain, are highly uncertain, impacting battery consumption and overall performance. Mission objectives are often prioritized by criticality, such as retrieving data from low-battery sensors to prevent data loss. Addressing these priorities requires sophisticated scheduling to navigate high-dimensional state-action spaces. While heuristics are useful for approximating solutions, few approaches extend to multi-robot systems or adequately address cost uncertainty and criticality, particularly during replanning. The Mixed-Criticality (MC) paradigm, extensively studied in real-time scheduling, provides a framework for handling cost uncertainty by ensuring the completion of high-critical tasks. Despite its potential, the application of MC in distributed systems remains limited. To address the decision-making challenges faced by distributed robots operating under cost uncertainty and objective criticality, we propose four contributions: a comprehensive model integrating criticality, uncertainty, and robustness; distributed synchronization and replanning mechanisms; the incorporation of mixed-criticality principles into multi-robot systems; and enhanced resilience against robot failures. We evaluated our solution, named RESCUE, in a simulated scenario and show how it increases the robustness by reducing the oversizing of the system and completing up to 40% more objectives. We found an increase in resilience of the multi-robot system as our solution not only guaranteed the safe return of every non-faulty robot, but also reduced the effects of a faulty robot by up to 14%. We also computed the performance gain compared to using MCTS in a single robot of up to 2.31 for 5 robots.

Cite as

Franco Cordeiro, Samuel Tardieu, and Laurent Pautet. RESCUE: Multi-Robot Planning Under Resource Uncertainty and Objective Criticality. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cordeiro_et_al:LIPIcs.ECRTS.2025.5,
  author =	{Cordeiro, Franco and Tardieu, Samuel and Pautet, Laurent},
  title =	{{RESCUE: Multi-Robot Planning Under Resource Uncertainty and Objective Criticality}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.5},
  URN =		{urn:nbn:de:0030-drops-235835},
  doi =		{10.4230/LIPIcs.ECRTS.2025.5},
  annote =	{Keywords: Multi-Robot Systems, Embedded Systems, Safety/Mixed-Critical Systems, Real-Time Systems, Monte-Carlo Tree Search}
}
Document
Arbitration-Induced Preemption Delays

Authors: Farouk Hebbache, Florian Brandner, Mathieu Jan, and Laurent Pautet

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
The interactions among concurrent tasks pose a challenge in the design of real-time multi-core systems, where blocking delays that tasks may experience while accessing shared memory have to be taken into consideration. Various memory arbitration schemes have been devised that address these issues, by providing trade-offs between predictability, average-case performance, and analyzability. Time-Division Multiplexing (TDM) is a well-known arbitration scheme due to its simplicity and analyzability. However, it suffers from low resource utilization due to its non-work-conserving nature. We proposed in our recent work dynamic schemes based on TDM, showing work-conserving behavior in practice, while retaining the guarantees of TDM. These approaches have only been evaluated in a restricted setting. Their applicability in a preemptive setting appears problematic, since they may induce long memory blocking times depending on execution history. These blocking delays may induce significant jitter and consequently increase the tasks' response times. This work explores means to manage and, finally, bound these blocking delays. Three different schemes are explored and compared with regard to their analyzability, impact on response-time analysis, implementation complexity, and runtime behavior. Experiments show that the various approaches behave virtually identically at runtime. This allows to retain the approach combining low implementation complexity with analyzability.

Cite as

Farouk Hebbache, Florian Brandner, Mathieu Jan, and Laurent Pautet. Arbitration-Induced Preemption Delays. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hebbache_et_al:LIPIcs.ECRTS.2019.19,
  author =	{Hebbache, Farouk and Brandner, Florian and Jan, Mathieu and Pautet, Laurent},
  title =	{{Arbitration-Induced Preemption Delays}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.19},
  URN =		{urn:nbn:de:0030-drops-107564},
  doi =		{10.4230/LIPIcs.ECRTS.2019.19},
  annote =	{Keywords: Dynamic Time-Division Multiplexing, Predictable Computing, Multi-Criticality, Preemption}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail