Search Results

Documents authored by Pawłowski, Michał


Document
Online Multi-Level Aggregation with Delays and Stochastic Arrivals

Authors: Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
This paper presents a new research direction for online Multi-Level Aggregation (MLA) with delays. Given an edge-weighted rooted tree T as input, a sequence of requests arriving at its vertices needs to be served in an online manner. A request r is characterized by two parameters: its arrival time t(r) > 0 and location l(r) being a vertex in tree T. Once r arrives, we can either serve it immediately or postpone this action until any time t > t(r). A request that has not been served at its arrival time is called pending up to the moment it gets served. We can serve several pending requests at the same time, paying a service cost equal to the weight of the subtree containing the locations of all the requests served and the root of T. Postponing the service of a request r to time t > t(r) generates an additional delay cost of t - t(r). The goal is to serve all requests in an online manner such that the total cost (i.e., the total sum of service and delay costs) is minimized. The MLA problem is a generalization of several well-studied problems, including the TCP Acknowledgment (trees of depth 1), Joint Replenishment (depth 2), and Multi-Level Message Aggregation (arbitrary depth). The current best algorithm achieves a competitive ratio of O(d²), where d denotes the depth of the tree. Here, we consider a stochastic version of MLA where the requests follow a Poisson arrival process. We present a deterministic online algorithm that achieves a constant ratio of expectations, meaning that the ratio between the expected costs of the solution generated by our algorithm and the optimal offline solution is bounded by a constant. Our algorithm is obtained by carefully combining two strategies. In the first one, we plan periodic oblivious visits to the subset of frequent vertices, whereas, in the second one, we greedily serve the pending requests in the remaining vertices. This problem is complex enough to demonstrate a very rare phenomenon that "single-minded" or "sample-average" strategies are not enough in stochastic optimization.

Cite as

Mathieu Mari, Michał Pawłowski, Runtian Ren, and Piotr Sankowski. Online Multi-Level Aggregation with Delays and Stochastic Arrivals. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 49:1-49:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mari_et_al:LIPIcs.ISAAC.2024.49,
  author =	{Mari, Mathieu and Paw{\l}owski, Micha{\l} and Ren, Runtian and Sankowski, Piotr},
  title =	{{Online Multi-Level Aggregation with Delays and Stochastic Arrivals}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{49:1--49:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.49},
  URN =		{urn:nbn:de:0030-drops-221768},
  doi =		{10.4230/LIPIcs.ISAAC.2024.49},
  annote =	{Keywords: online algorithms, online network design, stochastic model, Poisson arrivals}
}
Document
APPROX
Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Authors: Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Noam Touitou, 2023] developed a non-clairvoyant framework that provided an O(√{n log n}) upper bound for a wide class of generalized JRP, where n is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight O(√n)-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou’s algorithm is Ω(√{n log n})-competitive for both of these problems.

Cite as

Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh. Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.APPROX/RANDOM.2024.12,
  author =	{Ezra, Tomer and Leonardi, Stefano and Paw{\l}owski, Micha{\l} and Russo, Matteo and Umboh, Seeun William},
  title =	{{Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  URN =		{urn:nbn:de:0030-drops-210050},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  annote =	{Keywords: Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function Approximation, Multi-Level Aggregation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail