Search Results

Documents authored by Pollner, Tristan


Document
A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions

Authors: Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We investigate prophet inequalities with competitive ratios approaching 1, seeking to generalize k-uniform matroids. We first show that large girth does not suffice: for all k, there exists a matroid of girth ≥ k and a prophet inequality instance on that matroid whose optimal competitive ratio is 1/2. Next, we show k-fold matroid unions do suffice: we provide a prophet inequality with competitive ratio 1-O(√{(log k)/k}) for any k-fold matroid union. Our prophet inequality follows from an online contention resolution scheme. The key technical ingredient in our online contention resolution scheme is a novel bicriterion concentration inequality for arbitrary monotone 1-Lipschitz functions over independent items which may be of independent interest. Applied to our particular setting, our bicriterion concentration inequality yields "Chernoff-strength" concentration for a 1-Lipschitz function that is not (approximately) self-bounding.

Cite as

Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang. A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alon_et_al:LIPIcs.ITCS.2025.4,
  author =	{Alon, Noga and Gravin, Nick and Pollner, Tristan and Rubinstein, Aviad and Wang, Hongao and Weinberg, S. Matthew and Zhang, Qianfan},
  title =	{{A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.4},
  URN =		{urn:nbn:de:0030-drops-226329},
  doi =		{10.4230/LIPIcs.ITCS.2025.4},
  annote =	{Keywords: Prophet Inequalities, Online Contention Resolution Schemes, Concentration Inequalities}
}
Document
New Query Lower Bounds for Submodular Function Minimization

Authors: Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We consider submodular function minimization in the oracle model: given black-box access to a submodular set function f:2^[n] → ℝ, find an element of arg min_S {f(S)} using as few queries to f(⋅) as possible. State-of-the-art algorithms succeed with Õ(n²) queries [Yin Tat Lee et al., 2015], yet the best-known lower bound has never been improved beyond n [Nicholas J. A. Harvey, 2008]. We provide a query lower bound of 2n for submodular function minimization, a 3n/2-2 query lower bound for the non-trivial minimizer of a symmetric submodular function, and a binom{n}{2} query lower bound for the non-trivial minimizer of an asymmetric submodular function. Our 3n/2-2 lower bound results from a connection between SFM lower bounds and a novel concept we term the cut dimension of a graph. Interestingly, this yields a 3n/2-2 cut-query lower bound for finding the global mincut in an undirected, weighted graph, but we also prove it cannot yield a lower bound better than n+1 for s-t mincut, even in a directed, weighted graph.

Cite as

Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg. New Query Lower Bounds for Submodular Function Minimization. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 64:1-64:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{graur_et_al:LIPIcs.ITCS.2020.64,
  author =	{Graur, Andrei and Pollner, Tristan and Ramaswamy, Vidhya and Weinberg, S. Matthew},
  title =	{{New Query Lower Bounds for Submodular Function Minimization}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{64:1--64:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.64},
  URN =		{urn:nbn:de:0030-drops-117493},
  doi =		{10.4230/LIPIcs.ITCS.2020.64},
  annote =	{Keywords: submodular functions, query lower bounds, min cut}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail