Search Results

Documents authored by Protopapas, Evangelos


Document
Track A: Algorithms, Complexity and Games
Delineating Half-Integrality of the Erdős-Pósa Property for Minors: The Case of Surfaces

Authors: Christophe Paul, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In 1986 Robertson and Seymour proved a generalization of the seminal result of Erdős and Pósa on the duality of packing and covering cycles: A graph has the Erdős-Pósa property for minors if and only if it is planar. In particular, for every non-planar graph H they gave examples showing that the Erdős-Pósa property does not hold for H. Recently, Liu confirmed a conjecture of Thomas and showed that every graph has the half-integral Erdős-Pósa property for minors. Liu’s proof is non-constructive and to this date, with the exception of a small number of examples, no constructive proof is known. In this paper, we initiate the delineation of the half-integrality of the Erdős-Pósa property for minors. We conjecture that for every graph H, there exists a unique (up to a suitable equivalence relation on graph parameters) graph parameter EP_H such that H has the Erdős-Pósa property in a minor-closed graph class 𝒢 if and only if sup{EP_H(G) ∣ G ∈ 𝒢} is finite. We prove this conjecture for the class ℋ of Kuratowski-connected shallow-vortex minors by showing that, for every non-planar H ∈ ℋ, the parameter EP_H(G) is precisely the maximum order of a Robertson-Seymour counterexample to the Erdős-Pósa property of H which can be found as a minor in G. Our results are constructive and imply, for the first time, parameterized algorithms that find either a packing, or a cover, or one of the Robertson-Seymour counterexamples, certifying the existence of a half-integral packing for the graphs in ℋ.

Cite as

Christophe Paul, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Delineating Half-Integrality of the Erdős-Pósa Property for Minors: The Case of Surfaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 114:1-114:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.ICALP.2024.114,
  author =	{Paul, Christophe and Protopapas, Evangelos and Thilikos, Dimitrios M. and Wiederrecht, Sebastian},
  title =	{{Delineating Half-Integrality of the Erd\H{o}s-P\'{o}sa Property for Minors: The Case of Surfaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{114:1--114:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.114},
  URN =		{urn:nbn:de:0030-drops-202576},
  doi =		{10.4230/LIPIcs.ICALP.2024.114},
  annote =	{Keywords: Erd\H{o}s-P\'{o}sa property, Erd\H{o}s-P\'{o}sa pair, Graph parameters, Graph minors, Universal obstruction, Surface containment}
}
Document
Tree-Layout Based Graph Classes: Proper Chordal Graphs

Authors: Christophe Paul and Evangelos Protopapas

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Many important graph classes are characterized by means of layouts (a vertex ordering) excluding some patterns. For example, a graph G = (V,E) is a proper interval graph if and only if G has a layout 𝐋 such that for every triple of vertices such that x≺_𝐋 y≺_𝐋 z, if xz ∈ E, then xy ∈ E and yz ∈ E. Such a triple x, y, z is called an indifference triple. In this paper, we investigate the concept of excluding a set of patterns in tree-layouts rather than layouts. A tree-layout 𝐓_G = (T,r,ρ_G) of a graph G = (V,E) is a tree T rooted at some node r and equipped with a one-to-one mapping ρ_G between V and the nodes of T such that for every edge xy ∈ E, either x is an ancestor of y, denoted x≺_{𝐓_G} y, or y is an ancestor of x. Excluding patterns in a tree-layout is now defined using the ancestor relation. This leads to an unexplored territory of graph classes. In this paper, we initiate the study of such graph classes with the class of proper chordal graphs defined by excluding indifference triples in tree-layouts. Our results combine characterization, compact and canonical representation as well as polynomial time algorithms for the recognition and the graph isomorphism of proper chordal graphs. For this, one of the key ingredients is the introduction of the concept of FPQ-hierarchy generalizing the celebrated PQ-tree data-structure.

Cite as

Christophe Paul and Evangelos Protopapas. Tree-Layout Based Graph Classes: Proper Chordal Graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.STACS.2024.55,
  author =	{Paul, Christophe and Protopapas, Evangelos},
  title =	{{Tree-Layout Based Graph Classes: Proper Chordal Graphs}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{55:1--55:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.55},
  URN =		{urn:nbn:de:0030-drops-197652},
  doi =		{10.4230/LIPIcs.STACS.2024.55},
  annote =	{Keywords: Graph classes, Graph representation, Graph isomorphism}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail