Search Results

Documents authored by Przybyszewski, Wojciech


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flipper Games for Monadically Stable Graph Classes

Authors: Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy.

Cite as

Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper Games for Monadically Stable Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 128:1-128:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2023.128,
  author =	{Gajarsk\'{y}, Jakub and M\"{a}hlmann, Nikolas and McCarty, Rose and Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Siebertz, Sebastian and Soko{\l}owski, Marek and Toru\'{n}czyk, Szymon},
  title =	{{Flipper Games for Monadically Stable Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{128:1--128:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.128},
  URN =		{urn:nbn:de:0030-drops-181804},
  doi =		{10.4230/LIPIcs.ICALP.2023.128},
  annote =	{Keywords: Stability theory, structural graph theory, games}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes

Authors: Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We use model-theoretic tools originating from stability theory to derive a result we call the Finitary Substitute Lemma, which intuitively says the following. Suppose we work in a stable graph class 𝒞, and using a first-order formula φ with parameters we are able to define, in every graph G ∈ 𝒞, a relation R that satisfies some hereditary first-order assertion ψ. Then we are able to find a first-order formula φ' that has the same property, but additionally is finitary: there is finite bound k ∈ ℕ such that in every graph G ∈ 𝒞, different choices of parameters give only at most k different relations R that can be defined using φ'. We use the Finitary Substitute Lemma to derive two corollaries about the existence of certain canonical decompositions in classes of well-structured graphs. - We prove that in the Splitter game, which characterizes nowhere dense graph classes, and in the Flipper game, which characterizes monadically stable graph classes, there is a winning strategy for Splitter, respectively Flipper, that can be defined in first-order logic from the game history. Thus, the strategy is canonical. - We show that for any fixed graph class 𝒞 of bounded shrubdepth, there is an 𝒪(n²)-time algorithm that given an n-vertex graph G ∈ 𝒞, computes in an isomorphism-invariant way a structure H of bounded treedepth in which G can be interpreted. A corollary of this result is an 𝒪(n²)-time isomorphism test and canonization algorithm for any fixed class of bounded shrubdepth.

Cite as

Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 135:1-135:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ohlmann_et_al:LIPIcs.ICALP.2023.135,
  author =	{Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Canonical Decompositions in Monadically Stable and Bounded Shrubdepth Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{135:1--135:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.135},
  URN =		{urn:nbn:de:0030-drops-181874},
  doi =		{10.4230/LIPIcs.ICALP.2023.135},
  annote =	{Keywords: Model Theory, Stability Theory, Shrubdepth, Nowhere Dense, Monadically Stable}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Twin-Width and Types

Authors: Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study problems connected to first-order logic in graphs of bounded twin-width. Inspired by the approach of Bonnet et al. [FOCS 2020], we introduce a robust methodology of local types and describe their behavior in contraction sequences - the decomposition notion underlying twin-width. We showcase the applicability of the methodology by proving the following two algorithmic results. In both statements, we fix a first-order formula φ(x_1,…,x_k) and a constant d, and we assume that on input we are given a graph G together with a contraction sequence of width at most d. - One can in time 𝒪(n) construct a data structure that can answer the following queries in time 𝒪(log log n): given w_1,…,w_k, decide whether φ(w_1,…,w_k) holds in G. - After 𝒪(n)-time preprocessing, one can enumerate all tuples w₁,…,w_k that satisfy φ(x_1,…,x_k) in G with 𝒪(1) delay. In the first case, the query time can be reduced to 𝒪(1/ε) at the expense of increasing the construction time to 𝒪(n^{1+ε}), for any fixed ε > 0. Finally, we also apply our tools to prove the following statement, which shows optimal bounds on the VC density of set systems that are first-order definable in graphs of bounded twin-width. - Let G be a graph of twin-width d, A be a subset of vertices of G, and φ(x_1,…,x_k,y_1,…,y_l) be a first-order formula. Then the number of different subsets of A^k definable by φ using l-tuples of vertices from G as parameters, is bounded by O(|A|^l).

Cite as

Jakub Gajarský, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Twin-Width and Types. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 123:1-123:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2022.123,
  author =	{Gajarsk\'{y}, Jakub and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Twin-Width and Types}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{123:1--123:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.123},
  URN =		{urn:nbn:de:0030-drops-164640},
  doi =		{10.4230/LIPIcs.ICALP.2022.123},
  annote =	{Keywords: twin-width, FO logic, model checking, query answering, enumeration}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail