Document

**Published in:** LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

We introduce a novel family of expander-based error correcting codes. These codes can be sampled with randomness linear in the block-length, and achieve list decoding capacity (among other local properties). Our expander-based codes can be made starting from any family of sufficiently low-bias codes, and as a consequence, we give the first construction of a family of algebraic codes that can be sampled with linear randomness and achieve list-decoding capacity. We achieve this by introducing the notion of a pseudorandom puncturing of a code, where we select n indices of a base code C ⊂ 𝔽_q^m in a correlated fashion. Concretely, whereas a random linear code (i.e. a truly random puncturing of the Hadamard code) requires O(n log(m)) random bits to sample, we sample a pseudorandom linear code with O(n + log (m)) random bits by instantiating our pseudorandom puncturing as a length n random walk on an exapnder graph on [m]. In particular, we extend a result of Guruswami and Mosheiff (FOCS 2022) and show that a pseudorandom puncturing of a small-bias code satisfies the same local properties as a random linear code with high probability. As a further application of our techniques, we also show that pseudorandom puncturings of Reed-Solomon codes are list-recoverable beyond the Johnson bound, extending a result of Lund and Potukuchi (RANDOM 2020). We do this by instead analyzing properties of codes with large distance, and show that pseudorandom puncturings still work well in this regime.

Aaron (Louie) Putterman and Edward Pyne. Pseudorandom Linear Codes Are List-Decodable to Capacity. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 90:1-90:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{putterman_et_al:LIPIcs.ITCS.2024.90, author = {Putterman, Aaron (Louie) and Pyne, Edward}, title = {{Pseudorandom Linear Codes Are List-Decodable to Capacity}}, booktitle = {15th Innovations in Theoretical Computer Science Conference (ITCS 2024)}, pages = {90:1--90:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-309-6}, ISSN = {1868-8969}, year = {2024}, volume = {287}, editor = {Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.90}, URN = {urn:nbn:de:0030-drops-196183}, doi = {10.4230/LIPIcs.ITCS.2024.90}, annote = {Keywords: Derandomization, error-correcting codes} }

Document

RANDOM

**Published in:** LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)

A spanner of a graph is a subgraph that preserves lengths of shortest paths up to a multiplicative distortion. For every k, a spanner with size O(n^{1+1/k}) and stretch (2k+1) can be constructed by a simple centralized greedy algorithm, and this is tight assuming Erdős girth conjecture.
In this paper we study the problem of constructing spanners in a local manner, specifically in the Local Computation Model proposed by Rubinfeld et al. (ICS 2011).
We provide a randomized Local Computation Agorithm (LCA) for constructing (2r-1)-spanners with Õ(n^{1+1/r}) edges and probe complexity of Õ(n^{1-1/r}) for r ∈ {2,3}, where n denotes the number of vertices in the input graph. Up to polylogarithmic factors, in both cases, the stretch factor is optimal (for the respective number of edges). In addition, our probe complexity for r = 2, i.e., for constructing a 3-spanner, is optimal up to polylogarithmic factors. Our result improves over the probe complexity of Parter et al. (ITCS 2019) that is Õ(n^{1-1/2r}) for r ∈ {2,3}. Both our algorithms and the algorithms of Parter et al. use a combination of neighbor-probes and pair-probes in the above-mentioned LCAs.
For general k ≥ 1, we provide an LCA for constructing O(k²)-spanners with Õ(n^{1+1/k}) edges using O(n^{2/3}Δ²) neighbor-probes, improving over the Õ(n^{2/3}Δ⁴) algorithm of Parter et al.
By developing a new randomized LCA for graph decomposition, we further improve the probe complexity of the latter task to be O(n^{2/3-(1.5-α)/k}Δ²), for any constant α > 0. This latter LCA may be of independent interest.

Rubi Arviv, Lily Chung, Reut Levi, and Edward Pyne. Improved Local Computation Algorithms for Constructing Spanners. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 42:1-42:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{arviv_et_al:LIPIcs.APPROX/RANDOM.2023.42, author = {Arviv, Rubi and Chung, Lily and Levi, Reut and Pyne, Edward}, title = {{Improved Local Computation Algorithms for Constructing Spanners}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {42:1--42:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.42}, URN = {urn:nbn:de:0030-drops-188671}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.42}, annote = {Keywords: Local Computation Algorithms, Spanners} }

Document

RANDOM

**Published in:** LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)

We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation.
- Regular SOBPs of length n and width ⌊w(n+1)/2⌋ can exactly simulate general SOBPs of length n and width w, and moreover an n/2-o(n) blow-up in width is necessary for such a simulation. Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our simulation also extends to general (even read-many) oblivious branching programs.
- There exist natural functions computable by regular SOBPs of constant width that are average-case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width.
- There exist functions computable by constant-width arbitrary-order permutation ROBPs that are worst-case hard for exponential-width SOBPs.
- Read-twice permutation branching programs of subexponential width can simulate polynomial-width arbitrary-order ROBPs.

Chin Ho Lee, Edward Pyne, and Salil Vadhan. On the Power of Regular and Permutation Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 44:1-44:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.APPROX/RANDOM.2023.44, author = {Lee, Chin Ho and Pyne, Edward and Vadhan, Salil}, title = {{On the Power of Regular and Permutation Branching Programs}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {44:1--44:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.44}, URN = {urn:nbn:de:0030-drops-188698}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.44}, annote = {Keywords: Pseudorandomness, Branching Programs} }

Document

RANDOM

**Published in:** LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)

We analyze the Fourier growth, i.e. the L₁ Fourier weight at level k (denoted L_{1,k}), of read-once regular branching programs. We prove that every read-once regular branching program B of width w ∈ [1,∞] with s accepting states on n-bit inputs must have its L_{1,k} bounded by min{Pr[B(U_n) = 1](w-1)^k, s ⋅ O((n log n)/k)^{(k-1)/2}}. For any constant k, our result is tight up to constant factors for the AND function on w-1 bits, and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k = 1 we have L_{1,1}(B) ≤ s, with no dependence on the width w of the program.
Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs). Furthermore, we obtain an explicit generator for unordered permutation branching programs of unbounded width with a constant factor stretch, where no PRG was previously known.
Applying a composition theorem of Błasiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM 2021), we extend our results to "generalized group products," a generalization of modular sums and product tests.

Chin Ho Lee, Edward Pyne, and Salil Vadhan. Fourier Growth of Regular Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.APPROX/RANDOM.2022.2, author = {Lee, Chin Ho and Pyne, Edward and Vadhan, Salil}, title = {{Fourier Growth of Regular Branching Programs}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)}, pages = {2:1--2:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-249-5}, ISSN = {1868-8969}, year = {2022}, volume = {245}, editor = {Chakrabarti, Amit and Swamy, Chaitanya}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.2}, URN = {urn:nbn:de:0030-drops-171247}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2022.2}, annote = {Keywords: pseudorandomness, fourier analysis} }

Document

**Published in:** LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)

We construct improved hitting set generators (HSGs) for ordered (read-once) regular branching programs in two parameter regimes. First, we construct an explicit ε-HSG for unbounded-width regular branching programs with a single accept state with seed length Õ(log n ⋅ log(1/ε)), where n is the length of the program. Second, we construct an explicit ε-HSG for width-w length-n regular branching programs with seed length Õ(log n ⋅ (√{log(1/ε)} + log w) + log(1/ε)). For context, the "baseline" in this area is the pseudorandom generator (PRG) by Nisan (Combinatorica 1992), which fools ordered (possibly non-regular) branching programs with seed length O(log(wn/ε) ⋅ log n). For regular programs, the state-of-the-art PRG, by Braverman, Rao, Raz, and Yehudayoff (FOCS 2010, SICOMP 2014), has seed length Õ(log(w/ε) ⋅ log n), which beats Nisan’s seed length when log(w/ε) = o(log n). Taken together, our two new constructions beat Nisan’s seed length in all parameter regimes except when log w and log(1/ε) are both Ω(log n) (for the construction of HSGs for regular branching programs with a single accept vertex).
Extending work by Reingold, Trevisan, and Vadhan (STOC 2006), we furthermore show that an explicit HSG for regular branching programs with a single accept vertex with seed length o(log² n) in the regime log w = Θ(log(1/ε)) = Θ(log n) would imply improved HSGs for general ordered branching programs, which would be a major breakthrough in derandomization. Pyne and Vadhan (CCC 2021) recently obtained such parameters for the special case of permutation branching programs.

Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. Hitting Sets for Regular Branching Programs. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bogdanov_et_al:LIPIcs.CCC.2022.3, author = {Bogdanov, Andrej and Hoza, William M. and Prakriya, Gautam and Pyne, Edward}, title = {{Hitting Sets for Regular Branching Programs}}, booktitle = {37th Computational Complexity Conference (CCC 2022)}, pages = {3:1--3:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-241-9}, ISSN = {1868-8969}, year = {2022}, volume = {234}, editor = {Lovett, Shachar}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.3}, URN = {urn:nbn:de:0030-drops-165658}, doi = {10.4230/LIPIcs.CCC.2022.3}, annote = {Keywords: Pseudorandomness, hitting set generators, space-bounded computation} }

Document

**Published in:** LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)

For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting position_G(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/poly(n) close to those of a uniformly random walk in 𝓁₁ distance.
We first give an algorithm for local access to random walks on a given undirected d-regular graph with Õ(1/(1-λ)√n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n,d) are expanders with high probability, this gives an Õ(√n) algorithm for a graph drawn from G(n,d) whp, which improves on the naive method for small numbers of queries.
We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√n/log(n)) per query in expectation when the input graph is drawn from G(n,d), obtaining a nearly matching lower bound. We further show an Ω(n^{1/4}) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance).
We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree n^ε graphs for any ε ∈ (0,1]) and Cartesian product.

Amartya Shankha Biswas, Edward Pyne, and Ronitt Rubinfeld. Local Access to Random Walks. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.ITCS.2022.24, author = {Biswas, Amartya Shankha and Pyne, Edward and Rubinfeld, Ronitt}, title = {{Local Access to Random Walks}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {24:1--24:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.24}, URN = {urn:nbn:de:0030-drops-156209}, doi = {10.4230/LIPIcs.ITCS.2022.24}, annote = {Keywords: sublinear time algorithms, random generation, local computation} }

Document

**Published in:** LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)

A recent paper of Braverman, Cohen, and Garg (STOC 2018) introduced the concept of a weighted pseudorandom generator (WPRG), which amounts to a pseudorandom generator (PRG) whose outputs are accompanied with real coefficients that scale the acceptance probabilities of any potential distinguisher. They gave an explicit construction of WPRGs for ordered branching programs whose seed length has a better dependence on the error parameter ε than the classic PRG construction of Nisan (STOC 1990 and Combinatorica 1992).
In this work, we give an explicit construction of WPRGs that achieve parameters that are impossible to achieve by a PRG. In particular, we construct a WPRG for ordered permutation branching programs of unbounded width with a single accept state that has seed length Õ(log^{3/2} n) for error parameter ε = 1/poly(n), where n is the input length. In contrast, recent work of Hoza et al. (ITCS 2021) shows that any PRG for this model requires seed length Ω(log² n) to achieve error ε = 1/poly(n).
As a corollary, we obtain explicit WPRGs with seed length Õ(log^{3/2} n) and error ε = 1/poly(n) for ordered permutation branching programs of width w = poly(n) with an arbitrary number of accept states. Previously, seed length o(log² n) was only known when both the width and the reciprocal of the error are subpolynomial, i.e. w = n^{o(1)} and ε = 1/n^{o(1)} (Braverman, Rao, Raz, Yehudayoff, FOCS 2010 and SICOMP 2014).
The starting point for our results are the recent space-efficient algorithms for estimating random-walk probabilities in directed graphs by Ahmadenijad, Kelner, Murtagh, Peebles, Sidford, and Vadhan (FOCS 2020), which are based on spectral graph theory and space-efficient Laplacian solvers. We interpret these algorithms as giving WPRGs with large seed length, which we then derandomize to obtain our results. We also note that this approach gives a simpler proof of the original result of Braverman, Cohen, and Garg, as independently discovered by Cohen, Doron, Renard, Sberlo, and Ta-Shma (these proceedings).

Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom Generators (Extended Abstract). In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{pyne_et_al:LIPIcs.CCC.2021.33, author = {Pyne, Edward and Vadhan, Salil}, title = {{Pseudodistributions That Beat All Pseudorandom Generators (Extended Abstract)}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {33:1--33:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.33}, URN = {urn:nbn:de:0030-drops-143070}, doi = {10.4230/LIPIcs.CCC.2021.33}, annote = {Keywords: pseudorandomness, space-bounded computation, spectral graph theory} }

Document

**Published in:** LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)

We prove that the Impagliazzo-Nisan-Wigderson [Impagliazzo et al., 1994] pseudorandom generator (PRG) fools ordered (read-once) permutation branching programs of unbounded width with a seed length of Õ(log d + log n ⋅ log(1/ε)), assuming the program has only one accepting vertex in the final layer. Here, n is the length of the program, d is the degree (equivalently, the alphabet size), and ε is the error of the PRG. In contrast, we show that a randomly chosen generator requires seed length Ω(n log d) to fool such unbounded-width programs. Thus, this is an unusual case where an explicit construction is "better than random."
Except when the program’s width w is very small, this is an improvement over prior work. For example, when w = poly(n) and d = 2, the best prior PRG for permutation branching programs was simply Nisan’s PRG [Nisan, 1992], which fools general ordered branching programs with seed length O(log(wn/ε) log n). We prove a seed length lower bound of Ω̃(log d + log n ⋅ log(1/ε)) for fooling these unbounded-width programs, showing that our seed length is near-optimal. In fact, when ε ≤ 1/log n, our seed length is within a constant factor of optimal. Our analysis of the INW generator uses the connection between the PRG and the derandomized square of Rozenman and Vadhan [Rozenman and Vadhan, 2005] and the recent analysis of the latter in terms of unit-circle approximation by Ahmadinejad et al. [Ahmadinejad et al., 2020].

William M. Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom Generators for Unbounded-Width Permutation Branching Programs. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{hoza_et_al:LIPIcs.ITCS.2021.7, author = {Hoza, William M. and Pyne, Edward and Vadhan, Salil}, title = {{Pseudorandom Generators for Unbounded-Width Permutation Branching Programs}}, booktitle = {12th Innovations in Theoretical Computer Science Conference (ITCS 2021)}, pages = {7:1--7:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-177-1}, ISSN = {1868-8969}, year = {2021}, volume = {185}, editor = {Lee, James R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.7}, URN = {urn:nbn:de:0030-drops-135464}, doi = {10.4230/LIPIcs.ITCS.2021.7}, annote = {Keywords: Pseudorandom generators, permutation branching programs} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail