Document

APPROX

**Published in:** LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)

Maximum weight independent set (MWIS) admits a 1/k-approximation in inductively k-independent graphs [Karhan Akcoglu et al., 2002; Ye and Borodin, 2012] and a 1/(2k)-approximation in k-perfectly orientable graphs [Kammer and Tholey, 2014]. These are a parameterized class of graphs that generalize k-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others [Ye and Borodin, 2012; Kammer and Tholey, 2014]. We consider a generalization of MWIS to a submodular objective. Given a graph G = (V,E) and a non-negative submodular function f: 2^V → ℝ_+, the goal is to approximately solve max_{S ∈ ℐ_G} f(S) where ℐ_G is the set of independent sets of G. We obtain an Ω(1/k)-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least 1/e(k+1). This approach also yields parallel (or low-adaptivity) approximations.
Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively k-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks.

Chandra Chekuri and Kent Quanrud. Independent Sets in Elimination Graphs with a Submodular Objective. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.APPROX/RANDOM.2023.24, author = {Chekuri, Chandra and Quanrud, Kent}, title = {{Independent Sets in Elimination Graphs with a Submodular Objective}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {24:1--24:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.24}, URN = {urn:nbn:de:0030-drops-188490}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.24}, annote = {Keywords: elimination graphs, independent set, submodular maximization, primal-dual} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

Boob et al. [Boob et al., 2020] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and Torres [Chandra Chekuri et al., 2022] extended the algorithm to supermodular density problems (of which DSG is a special case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++) converges. In this paper we revisit the convergence proof and provide a different perspective. This is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal base in a (contra) polymatroid [Satoru Fujishige, 1980], and a noisy version of the Frank-Wolfe method from convex optimization [Frank and Wolfe, 1956; Jaggi, 2013]. This yields a simpler convergence proof, and also shows a stronger property that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question raised in Harb et al. [Harb et al., 2022]. A second contribution of the paper is to understand Thorup’s work on ideal tree packing and greedy tree packing [Thorup, 2007; Thorup, 2008] via the Frank-Wolfe algorithm applied to find a lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof. The two results appear disparate but are unified via Fujishige’s result and convex optimization.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and Applications to Densest Subgraph and Tree Packing. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 56:1-56:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{harb_et_al:LIPIcs.ESA.2023.56, author = {Harb, Elfarouk and Quanrud, Kent and Chekuri, Chandra}, title = {{Convergence to Lexicographically Optimal Base in a (Contra)Polymatroid and Applications to Densest Subgraph and Tree Packing}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {56:1--56:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.56}, URN = {urn:nbn:de:0030-drops-187091}, doi = {10.4230/LIPIcs.ESA.2023.56}, annote = {Keywords: Polymatroid, lexicographically optimum base, densest subgraph, tree packing} }

Document

APPROX

**Published in:** LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)

We present online algorithms for directed spanners and directed Steiner forests. These are well-studied network connectivity problems that fall under the unifying framework of online covering and packing linear programming formulations. This framework was developed in the seminal work of Buchbinder and Naor (Mathematics of Operations Research, 34, 2009) and is based on primal-dual techniques. Specifically, our results include the following:
- For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized algorithm with competitive ratio Õ(n^{4/5}) for graphs with general edge lengths, where n is the number of vertices of the given graph. For graphs with uniform edge lengths, we give an efficient randomized algorithm with competitive ratio Õ(n^{2/3+ε}), and an efficient deterministic algorithm with competitive ratio Õ(k^{1/2+ε}), where k is the number of terminal pairs. To the best of our knowledge, these are the first online algorithms for directed spanners. In the offline version, the current best approximation ratio for uniform edge lengths is Õ(n^{3/5 + ε}), due to Chlamt{á}č, Dinitz, Kortsarz, and Laekhanukit (SODA 2017, TALG 2020).
- For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized algorithm with competitive ratio Õ(n^{2/3 + ε}). The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is Õ(k^{1/2 + ε})-competitive. In the offline version, the current best approximation ratio with uniform costs is Õ(n^{26/45 + ε}), due to Abboud and Bodwin (SODA 2018).
To obtain efficient and competitive online algorithms, we observe that a small modification of the online covering and packing framework by Buchbinder and Naor implies a polynomial-time implementation of the primal-dual approach with separation oracles, which a priori might perform exponentially many calls to the oracle. We convert the online spanner problem into an online covering problem and complete the rounding-step analysis in a problem-specific fashion.

Elena Grigorescu, Young-San Lin, and Kent Quanrud. Online Directed Spanners and Steiner Forests. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{grigorescu_et_al:LIPIcs.APPROX/RANDOM.2021.5, author = {Grigorescu, Elena and Lin, Young-San and Quanrud, Kent}, title = {{Online Directed Spanners and Steiner Forests}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)}, pages = {5:1--5:25}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-207-5}, ISSN = {1868-8969}, year = {2021}, volume = {207}, editor = {Wootters, Mary and Sanit\`{a}, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.5}, URN = {urn:nbn:de:0030-drops-146987}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2021.5}, annote = {Keywords: online directed pairwise spanners, online directed Steiner forests, online covering/packing linear programming, primal-dual approach} }

Document

APPROX

**Published in:** LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)

We develop fast approximation algorithms for the minimum-cost version of the Bounded-Degree MST problem (BD-MST) and its generalization the Crossing Spanning Tree problem (Crossing-ST). We solve the underlying LP to within a (1+ε) approximation factor in near-linear time via the multiplicative weight update (MWU) technique. This yields, in particular, a near-linear time algorithm that outputs an estimate B such that B ≤ B^* ≤ ⌈(1+ε)B⌉+1 where B^* is the minimum-degree of a spanning tree of a given graph. To round the fractional solution, in our main technical contribution, we describe a fast near-linear time implementation of swap-rounding in the spanning tree polytope of a graph. The fractional solution can also be used to sparsify the input graph that can in turn be used to speed up existing combinatorial algorithms. Together, these ideas lead to significantly faster approximation algorithms than known before for the two problems of interest. In addition, a fast algorithm for swap rounding in the graphic matroid is a generic tool that has other applications, including to TSP and submodular function maximization.

Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Fast Approximation Algorithms for Bounded Degree and Crossing Spanning Tree Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 24:1-24:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.APPROX/RANDOM.2021.24, author = {Chekuri, Chandra and Quanrud, Kent and Torres, Manuel R.}, title = {{Fast Approximation Algorithms for Bounded Degree and Crossing Spanning Tree Problems}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)}, pages = {24:1--24:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-207-5}, ISSN = {1868-8969}, year = {2021}, volume = {207}, editor = {Wootters, Mary and Sanit\`{a}, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.24}, URN = {urn:nbn:de:0030-drops-147177}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2021.24}, annote = {Keywords: bounded degree spanning tree, crossing spanning tree, swap rounding, fast approximation algorithms} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

We consider the fundamental problems of determining the rooted and global edge and vertex connectivities (and computing the corresponding cuts) in directed graphs. For rooted (and hence also global) edge connectivity with small integer capacities we give a new randomized Monte Carlo algorithm that runs in time Õ(n²). For rooted edge connectivity this is the first algorithm to improve on the Ω(n³) time bound in the dense-graph high-connectivity regime. Our result relies on a simple combination of sampling coupled with sparsification that appears new, and could lead to further tradeoffs for directed graph connectivity problems.
We extend the edge connectivity ideas to rooted and global vertex connectivity in directed graphs. We obtain a (1+ε)-approximation for rooted vertex connectivity in Õ(nW/ε) time where W is the total vertex weight (assuming integral vertex weights); in particular this yields an Õ(n²/ε) time randomized algorithm for unweighted graphs. This translates to a Õ(KnW) time exact algorithm where K is the rooted connectivity. We build on this to obtain similar bounds for global vertex connectivity.
Our results complement the known results for these problems in the low connectivity regime due to work of Gabow [Harold N. Gabow, 1995] for edge connectivity from 1991, and the very recent work of Nanongkai et al. [Nanongkai et al., 2019] and Forster et al. [Sebastian Forster et al., 2020] for vertex connectivity.

Chandra Chekuri and Kent Quanrud. Faster Algorithms for Rooted Connectivity in Directed Graphs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 49:1-49:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ICALP.2021.49, author = {Chekuri, Chandra and Quanrud, Kent}, title = {{Faster Algorithms for Rooted Connectivity in Directed Graphs}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {49:1--49:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.49}, URN = {urn:nbn:de:0030-drops-141187}, doi = {10.4230/LIPIcs.ICALP.2021.49}, annote = {Keywords: rooted connectivity, directed graph, fast algorithm, sparsification} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

Li and Panigrahi [Jason Li and Debmalya Panigrahi, 2020], in recent work, obtained the first deterministic algorithm for the global minimum cut of a weighted undirected graph that runs in time o(mn). They introduced an elegant and powerful technique to find isolating cuts for a terminal set in a graph via a small number of s-t minimum cut computations.
In this paper we generalize their isolating cut approach to the abstract setting of symmetric bisubmodular functions (which also capture symmetric submodular functions). Our generalization to bisubmodularity is motivated by applications to element connectivity and vertex connectivity. Utilizing the general framework and other ideas we obtain significantly faster randomized algorithms for computing global (and subset) connectivity in a number of settings including hypergraphs, element connectivity and vertex connectivity in graphs, and for symmetric submodular functions.

Chandra Chekuri and Kent Quanrud. Isolating Cuts, (Bi-)Submodularity, and Faster Algorithms for Connectivity. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ICALP.2021.50, author = {Chekuri, Chandra and Quanrud, Kent}, title = {{Isolating Cuts, (Bi-)Submodularity, and Faster Algorithms for Connectivity}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {50:1--50:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.50}, URN = {urn:nbn:de:0030-drops-141199}, doi = {10.4230/LIPIcs.ICALP.2021.50}, annote = {Keywords: cuts, vertex connectivity, hypergraphs, fast algorithms, submodularity, bisumodularity, lattices, isolating cuts, element connectivity} }

Document

APPROX

**Published in:** LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)

In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time?
We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut.

Kent Quanrud. Fast and Deterministic Approximations for k-Cut. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{quanrud:LIPIcs.APPROX-RANDOM.2019.23, author = {Quanrud, Kent}, title = {{Fast and Deterministic Approximations for k-Cut}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)}, pages = {23:1--23:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-125-2}, ISSN = {1868-8969}, year = {2019}, volume = {145}, editor = {Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.23}, URN = {urn:nbn:de:0030-drops-112388}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.23}, annote = {Keywords: k-cut, multiplicative weight updates} }

Document

**Published in:** OASIcs, Volume 69, 2nd Symposium on Simplicity in Algorithms (SOSA 2019)

In the regime of bounded transportation costs, additive approximations for the optimal transport problem are reduced (rather simply) to relative approximations for positive linear programs, resulting in faster additive approximation algorithms for optimal transport.

Kent Quanrud. Approximating Optimal Transport With Linear Programs. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Open Access Series in Informatics (OASIcs), Volume 69, pp. 6:1-6:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{quanrud:OASIcs.SOSA.2019.6, author = {Quanrud, Kent}, title = {{Approximating Optimal Transport With Linear Programs}}, booktitle = {2nd Symposium on Simplicity in Algorithms (SOSA 2019)}, pages = {6:1--6:9}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-099-6}, ISSN = {2190-6807}, year = {2019}, volume = {69}, editor = {Fineman, Jeremy T. and Mitzenmacher, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.SOSA.2019.6}, URN = {urn:nbn:de:0030-drops-100321}, doi = {10.4230/OASIcs.SOSA.2019.6}, annote = {Keywords: optimal transport, fast approximations, linear programming} }

Document

**Published in:** OASIcs, Volume 69, 2nd Symposium on Simplicity in Algorithms (SOSA 2019)

Karger used spanning tree packings [Karger, 2000] to derive a near linear-time randomized algorithm for the global minimum cut problem as well as a bound on the number of approximate minimum cuts. This is a different approach from his well-known random contraction algorithm [Karger, 1995; Karger and Stein, 1996]. Thorup developed a fast deterministic algorithm for the minimum k-cut problem via greedy recursive tree packings [Thorup, 2008].
In this paper we revisit properties of an LP relaxation for k-cut proposed by Naor and Rabani [Naor and Rabani, 2001], and analyzed in [Chekuri et al., 2006]. We show that the dual of the LP yields a tree packing, that when combined with an upper bound on the integrality gap for the LP, easily and transparently extends Karger's analysis for mincut to the k-cut problem. In addition to the simplicity of the algorithm and its analysis, this allows us to improve the running time of Thorup's algorithm by a factor of n. We also improve the bound on the number of alpha-approximate k-cuts. Second, we give a simple proof that the integrality gap of the LP is 2(1-1/n). Third, we show that an optimum solution to the LP relaxation, for all values of k, is fully determined by the principal sequence of partitions of the input graph. This allows us to relate the LP relaxation to the Lagrangean relaxation approach of Barahona [Barahona, 2000] and Ravi and Sinha [Ravi and Sinha, 2008]; it also shows that the idealized recursive tree packing considered by Thorup gives an optimum dual solution to the LP. This work arose from an effort to understand and simplify the results of Thorup [Thorup, 2008].

Chandra Chekuri, Kent Quanrud, and Chao Xu. LP Relaxation and Tree Packing for Minimum k-cuts. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Open Access Series in Informatics (OASIcs), Volume 69, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:OASIcs.SOSA.2019.7, author = {Chekuri, Chandra and Quanrud, Kent and Xu, Chao}, title = {{LP Relaxation and Tree Packing for Minimum k-cuts}}, booktitle = {2nd Symposium on Simplicity in Algorithms (SOSA 2019)}, pages = {7:1--7:18}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-099-6}, ISSN = {2190-6807}, year = {2019}, volume = {69}, editor = {Fineman, Jeremy T. and Mitzenmacher, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.SOSA.2019.7}, URN = {urn:nbn:de:0030-drops-100335}, doi = {10.4230/OASIcs.SOSA.2019.7}, annote = {Keywords: k-cut, LP relaxation, tree packing} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail