Search Results

Documents authored by Rehs, Carolin


Document
Oriented Spanners

Authors: Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs, André van Renssen, and Sampson Wong

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Given a point set P in the Euclidean plane and a parameter t, we define an oriented t-spanner as an oriented subgraph of the complete bi-directed graph such that for every pair of points, the shortest cycle in G through those points is at most a factor t longer than the shortest oriented cycle in the complete bi-directed graph. We investigate the problem of computing sparse graphs with small oriented dilation. As we can show that minimising oriented dilation for a given number of edges is NP-hard in the plane, we first consider one-dimensional point sets. While obtaining a 1-spanner in this setting is straightforward, already for five points such a spanner has no plane embedding with the leftmost and rightmost point on the outer face. This leads to restricting to oriented graphs with a one-page book embedding on the one-dimensional point set. For this case we present a dynamic program to compute the graph of minimum oriented dilation that runs in 𝒪(n⁸) time for n points, and a greedy algorithm that computes a 5-spanner in 𝒪(nlog n) time. Expanding these results finally gives us a result for two-dimensional point sets: we prove that for convex point sets the greedy triangulation results in an oriented 𝒪(1)-spanner.

Cite as

Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs, André van Renssen, and Sampson Wong. Oriented Spanners. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ESA.2023.26,
  author =	{Buchin, Kevin and Gudmundsson, Joachim and Kalb, Antonia and Popov, Aleksandr and Rehs, Carolin and van Renssen, Andr\'{e} and Wong, Sampson},
  title =	{{Oriented Spanners}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.26},
  URN =		{urn:nbn:de:0030-drops-186796},
  doi =		{10.4230/LIPIcs.ESA.2023.26},
  annote =	{Keywords: computational geometry, spanner, oriented graph, greedy triangulation}
}
Document
A Timecop’s Work Is Harder Than You Think

Authors: Nils Morawietz, Carolin Rehs, and Mathias Weller

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We consider the (parameterized) complexity of a cop and robber game on periodic, temporal graphs and a problem on periodic sequences to which these games relate intimately. In particular, we show that it is NP-hard to decide (a) whether there is some common index at which all given periodic, binary sequences are 0, and (b) whether a single cop can catch a single robber on an edge-periodic temporal graph. We further present results for various parameterizations of both problems and show that hardness not only applies in general, but also for highly limited instances. As one main result we show that even if the graph has a size-2 vertex cover and is acyclic in each time step, the cop and robber game on periodic, temporal graphs is NP-hard and W[1]-hard when parameterized by the size of the underlying input graph.

Cite as

Nils Morawietz, Carolin Rehs, and Mathias Weller. A Timecop’s Work Is Harder Than You Think. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 71:1-71:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{morawietz_et_al:LIPIcs.MFCS.2020.71,
  author =	{Morawietz, Nils and Rehs, Carolin and Weller, Mathias},
  title =	{{A Timecop’s Work Is Harder Than You Think}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{71:1--71:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.71},
  URN =		{urn:nbn:de:0030-drops-127404},
  doi =		{10.4230/LIPIcs.MFCS.2020.71},
  annote =	{Keywords: edge-periodic temporal graphs, cops and robbers, tally-intersection, congruence satisfyability}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail