Search Results

Documents authored by Skoulakis, Stratis


Document
Track A: Algorithms, Complexity and Games
On the Approximability of Multistage Min-Sum Set Cover

Authors: Dimitris Fotakis, Panagiotis Kostopanagiotis, Vasileios Nakos, Georgios Piliouras, and Stratis Skoulakis

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We investigate the polynomial-time approximability of the multistage version of Min-Sum Set Cover (Mult-MSSC), a natural and intriguing generalization of the classical List Update problem. In Mult-MSSC, we maintain a sequence of permutations (π⁰, π¹, …, π^T) on n elements, based on a sequence of requests ℛ = (R¹, …, R^T). We aim to minimize the total cost of updating π^{t-1} to π^{t}, quantified by the Kendall tau distance d_{KT}(π^{t-1}, π^t), plus the total cost of covering each request R^t with the current permutation π^t, quantified by the position of the first element of R^t in π^t. Using a reduction from Set Cover, we show that Mult-MSSC does not admit an O(1)-approximation, unless P = NP, and that any o(log n) (resp. o(r)) approximation to Mult-MSSC implies a sublogarithmic (resp. o(r)) approximation to Set Cover (resp. where each element appears at most r times). Our main technical contribution is to show that Mult-MSSC can be approximated in polynomial-time within a factor of O(log² n) in general instances, by randomized rounding, and within a factor of O(r²), if all requests have cardinality at most r, by deterministic rounding.

Cite as

Dimitris Fotakis, Panagiotis Kostopanagiotis, Vasileios Nakos, Georgios Piliouras, and Stratis Skoulakis. On the Approximability of Multistage Min-Sum Set Cover. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 65:1-65:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fotakis_et_al:LIPIcs.ICALP.2021.65,
  author =	{Fotakis, Dimitris and Kostopanagiotis, Panagiotis and Nakos, Vasileios and Piliouras, Georgios and Skoulakis, Stratis},
  title =	{{On the Approximability of Multistage Min-Sum Set Cover}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{65:1--65:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.65},
  URN =		{urn:nbn:de:0030-drops-141341},
  doi =		{10.4230/LIPIcs.ICALP.2021.65},
  annote =	{Keywords: Approximation Algorithms, Multistage Min-Sum Set Cover, Multistage Optimization Problems}
}
Document
Track A: Algorithms, Complexity and Games
Node-Max-Cut and the Complexity of Equilibrium in Linear Weighted Congestion Games

Authors: Dimitris Fotakis, Vardis Kandiros, Thanasis Lianeas, Nikos Mouzakis, Panagiotis Patsilinakos, and Stratis Skoulakis

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In this work, we seek a more refined understanding of the complexity of local optimum computation for Max-Cut and pure Nash equilibrium (PNE) computation for congestion games with weighted players and linear latency functions. We show that computing a PNE of linear weighted congestion games is PLS-complete either for very restricted strategy spaces, namely when player strategies are paths on a series-parallel network with a single origin and destination, or for very restricted latency functions, namely when the latency on each resource is equal to the congestion. Our results reveal a remarkable gap regarding the complexity of PNE in congestion games with weighted and unweighted players, since in case of unweighted players, a PNE can be easily computed by either a simple greedy algorithm (for series-parallel networks) or any better response dynamics (when the latency is equal to the congestion). For the latter of the results above, we need to show first that computing a local optimum of a natural restriction of Max-Cut, which we call Node-Max-Cut, is PLS-complete. In Node-Max-Cut, the input graph is vertex-weighted and the weight of each edge is equal to the product of the weights of its endpoints. Due to the very restricted nature of Node-Max-Cut, the reduction requires a careful combination of new gadgets with ideas and techniques from previous work. We also show how to compute efficiently a (1+ε)-approximate equilibrium for Node-Max-Cut, if the number of different vertex weights is constant.

Cite as

Dimitris Fotakis, Vardis Kandiros, Thanasis Lianeas, Nikos Mouzakis, Panagiotis Patsilinakos, and Stratis Skoulakis. Node-Max-Cut and the Complexity of Equilibrium in Linear Weighted Congestion Games. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 50:1-50:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fotakis_et_al:LIPIcs.ICALP.2020.50,
  author =	{Fotakis, Dimitris and Kandiros, Vardis and Lianeas, Thanasis and Mouzakis, Nikos and Patsilinakos, Panagiotis and Skoulakis, Stratis},
  title =	{{Node-Max-Cut and the Complexity of Equilibrium in Linear Weighted Congestion Games}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{50:1--50:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.50},
  URN =		{urn:nbn:de:0030-drops-124573},
  doi =		{10.4230/LIPIcs.ICALP.2020.50},
  annote =	{Keywords: PLS-completeness, Local-Max-Cut, Weighted Congestion Games, Equilibrium Computation}
}
Document
Track A: Algorithms, Complexity and Games
The Online Min-Sum Set Cover Problem

Authors: Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis, and Manolis Vardas

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We consider the online Min-Sum Set Cover (MSSC), a natural and intriguing generalization of the classical list update problem. In Online MSSC, the algorithm maintains a permutation on n elements based on subsets S₁, S₂, … arriving online. The algorithm serves each set S_t upon arrival, using its current permutation π_t, incurring an access cost equal to the position of the first element of S_t in π_t. Then, the algorithm may update its permutation to π_{t+1}, incurring a moving cost equal to the Kendall tau distance of π_t to π_{t+1}. The objective is to minimize the total access and moving cost for serving the entire sequence. We consider the r-uniform version, where each S_t has cardinality r. List update is the special case where r = 1. We obtain tight bounds on the competitive ratio of deterministic online algorithms for MSSC against a static adversary, that serves the entire sequence by a single permutation. First, we show a lower bound of (r+1)(1-r/(n+1)) on the competitive ratio. Then, we consider several natural generalizations of successful list update algorithms and show that they fail to achieve any interesting competitive guarantee. On the positive side, we obtain a O(r)-competitive deterministic algorithm using ideas from online learning and the multiplicative weight updates (MWU) algorithm. Furthermore, we consider efficient algorithms. We propose a memoryless online algorithm, called Move-All-Equally, which is inspired by the Double Coverage algorithm for the k-server problem. We show that its competitive ratio is Ω(r²) and 2^{O(√{log n ⋅ log r})}, and conjecture that it is f(r)-competitive. We also compare Move-All-Equally against the dynamic optimal solution and obtain (almost) tight bounds by showing that it is Ω(r √n) and O(r^{3/2} √n)-competitive.

Cite as

Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis, and Manolis Vardas. The Online Min-Sum Set Cover Problem. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 51:1-51:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fotakis_et_al:LIPIcs.ICALP.2020.51,
  author =	{Fotakis, Dimitris and Kavouras, Loukas and Koumoutsos, Grigorios and Skoulakis, Stratis and Vardas, Manolis},
  title =	{{The Online Min-Sum Set Cover Problem}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{51:1--51:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.51},
  URN =		{urn:nbn:de:0030-drops-124582},
  doi =		{10.4230/LIPIcs.ICALP.2020.51},
  annote =	{Keywords: Online Algorithms, Competitive Analysis, Min-Sum Set Cover}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail