Search Results

Documents authored by Srinivasan, Adarsh


Document
#SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank

Authors: Nutan Limaye, Adarsh Srinivasan, and Srikanth Srinivasan

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
There is a large body of work that shows how to leverage lower bound techniques for circuit classes to obtain satisfiability algorithms that run in better than brute-force time [Ramamohan Paturi et al., 1997; Ryan Williams, 2014]. For circuits with threshold gates, there are several such algorithms based on either - Probabilistic Representations by low-degree polynomials, which allow for the use of fast polynomial evaluation algorithms, or - Low rank, which allows for an efficient reduction to rectangular matrix multiplication. In this paper, we use a related notion of probabilistic rank to obtain satisfiability algorithms for circuit classes contained in ACC⁰∘3-PTF, i.e. constant-depth circuits with modular counting gates and a single layer of degree-3 polynomial threshold functions. Even for the special case of a single 3-PTF, it is not clear how to use either of the above two strategies to get a non-trivial satisfiability algorithm. The best known algorithm in this case previously was based on memoization and yields worse guarantees than our algorithm.

Cite as

Nutan Limaye, Adarsh Srinivasan, and Srikanth Srinivasan. #SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 67:1-67:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{limaye_et_al:LIPIcs.MFCS.2025.67,
  author =	{Limaye, Nutan and Srinivasan, Adarsh and Srinivasan, Srikanth},
  title =	{{#SAT-Algorithms for Classes of Threshold Circuits Based on Probabilistic Rank}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{67:1--67:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.67},
  URN =		{urn:nbn:de:0030-drops-241744},
  doi =		{10.4230/LIPIcs.MFCS.2025.67},
  annote =	{Keywords: probabilistic polynomials, probabilistic rank, circuit satisfiability, circuit lower bounds, polynomial method, threshold circuits}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments

Authors: Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Given a k-CNF formula and an integer s ≥ 2, we study algorithms that obtain s solutions to the formula that are as dispersed as possible. For s = 2, this problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k = 2. The current best upper bound [Angelsmark and Thapper '04] goes to 4ⁿ as k → ∞. As our first result, we show that this quadratic blow up is not necessary by utilizing the Fast-Fourier transform (FFT) to give a O^*(2ⁿ) time exact algorithm for computing the diameter of any k-CNF formula. For s > 2, the problem was raised in the SAT community (Nadel '11) and several heuristics have been proposed for it, but no algorithms with theoretical guarantees are known. We give exact algorithms using FFT and clique-finding that run in O^*(2^{(s-1)n}) and O^*(s² |Ω_{𝐅}|^{ω ⌈ s/3 ⌉}) respectively, where |Ω_{𝐅}| is the size of the solutions space of the formula 𝐅 and ω is the matrix multiplication exponent. However, current SAT algorithms for finding one solution run in time O^*(2^{ε_{k}n}) for ε_{k} ≈ 1-Θ(1/k), which is much faster than all above run times. As our main result, we analyze two popular SAT algorithms - PPZ (Paturi, Pudlák, Zane '97) and Schöning’s ('02) algorithms, and show that in time poly(s)O^*(2^{ε_{k}n}), they can be used to approximate diameter as well as the dispersion (s > 2) problem. While we need to modify Schöning’s original algorithm for technical reasons, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe this geometric sampling property of PPZ may be of independent interest. Finally, we focus on diverse solutions to NP-complete optimization problems, and give bi-approximations running in time poly(s)O^*(2^{ε n}) with ε < 1 for several problems such as Maximum Independent Set, Minimum Vertex Cover, Minimum Hitting Set, Feedback Vertex Set, Multicut on Trees and Interval Vertex Deletion. For all of these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods show that by relaxing to bi-approximations, this dependence on s can be made polynomial.

Cite as

Per Austrin, Ioana O. Bercea, Mayank Goswami, Nutan Limaye, and Adarsh Srinivasan. Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.ICALP.2025.14,
  author =	{Austrin, Per and Bercea, Ioana O. and Goswami, Mayank and Limaye, Nutan and Srinivasan, Adarsh},
  title =	{{Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.14},
  URN =		{urn:nbn:de:0030-drops-233916},
  doi =		{10.4230/LIPIcs.ICALP.2025.14},
  annote =	{Keywords: Exponential time algorithms, Satisfiability, k-SAT, PPZ, Sch\"{o}ning, Dispersion, Diversity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail