Search Results

Documents authored by Stiller, Sebastian


Document
Fast Robust Shortest Path Computations

Authors: Christoph Hansknecht, Alexander Richter, and Sebastian Stiller

Published in: OASIcs, Volume 65, 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018)


Abstract
We develop a fast method to compute an optimal robust shortest path in large networks like road networks, a fundamental problem in traffic and logistics under uncertainty. In the robust shortest path problem we are given an s-t-graph D(V,A) and for each arc a nominal length c(a) and a maximal increase d(a) of its length. We consider all scenarios in which for the increased lengths c(a) + bar{d}(a) we have bar{d}(a) <= d(a) and sum_{a in A} (bar{d}(a)/d(a)) <= Gamma. Each path is measured by the length in its worst-case scenario. A classic result [Bertsimas and Sim, 2003] minimizes this path length by solving (|A| + 1)-many shortest path problems. Easily, (|A| + 1) can be replaced by |Theta|, where Theta is the set of all different values d(a) and 0. Still, the approach remains impractical for large graphs. Using the monotonicity of a part of the objective we devise a Divide and Conquer method to evaluate significantly fewer values of Theta. This methods generalizes to binary linear robust problems. Specifically for shortest paths we derive a lower bound to speed-up the Divide and Conquer of Theta. The bound is based on carefully using previous shortest path computations. We combine the approach with non-preprocessing based acceleration techniques for Dijkstra adapted to the robust case. In a computational study we document the value of different accelerations tried in the algorithm engineering process. We also give an approximation scheme for the robust shortest path problem which computes a (1 + epsilon)-approximate solution requiring O(log(d^ / (1 + epsilon))) computations of the nominal problem where d^ := max d(A) / min (d(A)\{0}).

Cite as

Christoph Hansknecht, Alexander Richter, and Sebastian Stiller. Fast Robust Shortest Path Computations. In 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Open Access Series in Informatics (OASIcs), Volume 65, pp. 5:1-5:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hansknecht_et_al:OASIcs.ATMOS.2018.5,
  author =	{Hansknecht, Christoph and Richter, Alexander and Stiller, Sebastian},
  title =	{{Fast Robust Shortest Path Computations}},
  booktitle =	{18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018)},
  pages =	{5:1--5:21},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-096-5},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{65},
  editor =	{Bornd\"{o}rfer, Ralf and Storandt, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2018.5},
  URN =		{urn:nbn:de:0030-drops-97100},
  doi =		{10.4230/OASIcs.ATMOS.2018.5},
  annote =	{Keywords: Graph Algorithms, Shortest Paths, Robust Optimization}
}
Document
Robust Appointment Scheduling

Authors: Shashi Mittal, Andreas S. Schulz, and Sebastian Stiller

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
Health care providers are under tremendous pressure to reduce costs and increase quality of their services. It has long been recognized that well-designed appointment systems have the potential to improve utilization of expensive personnel and medical equipment and to reduce waiting times for patients. In a widely influential survey on outpatient scheduling, Cayirli and Veral (2003) concluded that the "biggest challenge for future research will be to develop easy-to-use heuristics." We analyze the appointment scheduling problem from a robust-optimization perspective, and we establish the existence of a closed-form optimal solution--arguably the simplest and best `heuristic' possible. In case the order of patients is changeable, the robust optimization approach yields a novel formulation of the appointment scheduling problem as that of minimizing a concave function over a supermodular polyhedron. We devise the first constant-factor approximation algorithm for this case.

Cite as

Shashi Mittal, Andreas S. Schulz, and Sebastian Stiller. Robust Appointment Scheduling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 356-370, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{mittal_et_al:LIPIcs.APPROX-RANDOM.2014.356,
  author =	{Mittal, Shashi and Schulz, Andreas S. and Stiller, Sebastian},
  title =	{{Robust Appointment Scheduling}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{356--370},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.356},
  URN =		{urn:nbn:de:0030-drops-47089},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.356},
  annote =	{Keywords: Robust Optimization, Health Care Scheduling, Approximation Algorithms}
}
Document
Packing a Knapsack of Unknown Capacity

Authors: Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt to pack an item that does not fit, the item is discarded; if the item fits, we have to include it in the packing. We show that there is always a policy that packs a value within factor 2 of the optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a factor equal to the golden ratio. Both factors are shown to be best possible. In fact, we obtain the above factors using packing policies that are universal in the sense that they fix a particular order of the items and try to pack the items in this order, independent of the observations made while packing. We give efficient algorithms computing these policies. On the other hand, we show that, for any a>1, the problem of deciding whether a given universal policy achieves a factor of a is coNP-complete. If a is part of the input, the same problem is shown to be coNP-complete for items with unit densities. Finally, we show that it is coNP-hard to decide, for given a, whether a set of items admits a universal policy with factor a, even if all items have unit densities.

Cite as

Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a Knapsack of Unknown Capacity. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 276-287, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{disser_et_al:LIPIcs.STACS.2014.276,
  author =	{Disser, Yann and Klimm, Max and Megow, Nicole and Stiller, Sebastian},
  title =	{{Packing a Knapsack of Unknown Capacity}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{276--287},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.276},
  URN =		{urn:nbn:de:0030-drops-44642},
  doi =		{10.4230/LIPIcs.STACS.2014.276},
  annote =	{Keywords: Knapsack, unknown capacity, robustness, approximation algorithms}
}
Document
Complete Volume
OASIcs, Volume 33, ATMOS'13, Complete Volume

Authors: Daniele Frigioni and Sebastian Stiller

Published in: OASIcs, Volume 33, 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2013)


Abstract
OASIcs, Volume 33, ATMOS'13, Complete Volume

Cite as

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@Proceedings{frigioni_et_al:OASIcs.ATMOS.2013,
  title =	{{OASIcs, Volume 33, ATMOS'13, Complete Volume}},
  booktitle =	{13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-58-3},
  ISSN =	{2190-6807},
  year =	{2013},
  volume =	{33},
  editor =	{Frigioni, Daniele and Stiller, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2013},
  URN =		{urn:nbn:de:0030-drops-42535},
  doi =		{10.4230/OASIcs.ATMOS.2013},
  annote =	{Keywords: Analysis of Algorithms and Problem Complexity, Optimization, Graph Theory, Applications}
}
Document
Front Matter
Frontmatter, Table of Contents, Preface, Workshop Organization

Authors: Daniele Frigioni and Sebastian Stiller

Published in: OASIcs, Volume 33, 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2013)


Abstract
Frontmatter, Table of Contents, Preface, Workshop Organization

Cite as

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 33, pp. i-xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{frigioni_et_al:OASIcs.ATMOS.2013.i,
  author =	{Frigioni, Daniele and Stiller, Sebastian},
  title =	{{Frontmatter, Table of Contents, Preface, Workshop Organization}},
  booktitle =	{13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems},
  pages =	{i--xii},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-58-3},
  ISSN =	{2190-6807},
  year =	{2013},
  volume =	{33},
  editor =	{Frigioni, Daniele and Stiller, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2013.i},
  URN =		{urn:nbn:de:0030-drops-42391},
  doi =		{10.4230/OASIcs.ATMOS.2013.i},
  annote =	{Keywords: Frontmatter, Table of Contents, Preface, Workshop Organization}
}
Document
10071 Open Problems – Scheduling

Authors: Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
Collection of the open problems presented at the scheduling seminar.

Cite as

Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger. 10071 Open Problems – Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:DagSemProc.10071.3,
  author =	{Anderson, Jim and Andersson, Bj\"{o}rn and Azar, Yossi and Bansal, Nikhil and Bini, Enrico and Chrobak, Marek and Correa, Jos\'{e} and Cucu-Grosjean, Liliana and Davis, Rob and Easwaran, Arvind and Edmonds, Jeff and Funk, Shelby and Gopalakrishnan, Sathish and Hoogeveen, Han and Mathieu, Claire and Megow, Nicole and Naor, Seffi and Pruhs, Kirk and Queyranne, Maurice and Ros\'{e}n, Adi and Schabanel, Nicolas and Sgall, Ji\v{r}{\'\i} and Sitters, Ren\'{e} and Stiller, Sebastian and Uetz, Marc and Vredeveld, Tjark and Woeginger, Gerhard J.},
  title =	{{10071 Open Problems – Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--24},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.3},
  URN =		{urn:nbn:de:0030-drops-25367},
  doi =		{10.4230/DagSemProc.10071.3},
  annote =	{Keywords: Open problems, scheduling}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail