Search Results

Documents authored by Stoeckl, Manuel


Document
Finding Missing Items Requires Strong Forms of Randomness

Authors: Amit Chakrabarti and Manuel Stoeckl

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Adversarially robust streaming algorithms are required to process a stream of elements and produce correct outputs, even when each stream element can be chosen as a function of earlier algorithm outputs. As with classic streaming algorithms, which must only be correct for the worst-case fixed stream, adversarially robust algorithms with access to randomness can use significantly less space than deterministic algorithms. We prove that for the Missing Item Finding problem in streaming, the space complexity also significantly depends on how adversarially robust algorithms are permitted to use randomness. (In contrast, the space complexity of classic streaming algorithms does not depend as strongly on the way randomness is used.) For Missing Item Finding on streams of length 𝓁 with elements in {1,…,n}, and ≤ 1/poly(𝓁) error, we show that when 𝓁 = O(2^√{log n}), "random seed" adversarially robust algorithms, which only use randomness at initialization, require 𝓁^Ω(1) bits of space, while "random tape" adversarially robust algorithms, which may make random decisions at any time, may use O(polylog(𝓁)) random bits. When 𝓁 is between n^Ω(1) and O(√n), "random tape" adversarially robust algorithms need 𝓁^Ω(1) space, while "random oracle" adversarially robust algorithms, which can read from a long random string for free, may use O(polylog(𝓁)) space. The space lower bound for the "random seed" case follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming algorithms given in this paper.

Cite as

Amit Chakrabarti and Manuel Stoeckl. Finding Missing Items Requires Strong Forms of Randomness. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarti_et_al:LIPIcs.CCC.2024.28,
  author =	{Chakrabarti, Amit and Stoeckl, Manuel},
  title =	{{Finding Missing Items Requires Strong Forms of Randomness}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{28:1--28:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.28},
  URN =		{urn:nbn:de:0030-drops-204242},
  doi =		{10.4230/LIPIcs.CCC.2024.28},
  annote =	{Keywords: Data streaming, lower bounds, space complexity, adversarial robustness, derandomization, sketching, sampling}
}
Document
Track A: Algorithms, Complexity and Games
Low-Memory Algorithms for Online Edge Coloring

Authors: Prantar Ghosh and Manuel Stoeckl

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.

Cite as

Prantar Ghosh and Manuel Stoeckl. Low-Memory Algorithms for Online Edge Coloring. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ICALP.2024.71,
  author =	{Ghosh, Prantar and Stoeckl, Manuel},
  title =	{{Low-Memory Algorithms for Online Edge Coloring}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.71},
  URN =		{urn:nbn:de:0030-drops-202146},
  doi =		{10.4230/LIPIcs.ICALP.2024.71},
  annote =	{Keywords: Edge coloring, streaming model, online algorithms}
}
Document
Adversarially Robust Coloring for Graph Streams

Authors: Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
A streaming algorithm is considered to be adversarially robust if it provides correct outputs with high probability even when the stream updates are chosen by an adversary who may observe and react to the past outputs of the algorithm. We grow the burgeoning body of work on such algorithms in a new direction by studying robust algorithms for the problem of maintaining a valid vertex coloring of an n-vertex graph given as a stream of edges. Following standard practice, we focus on graphs with maximum degree at most Δ and aim for colorings using a small number f(Δ) of colors. A recent breakthrough (Assadi, Chen, and Khanna; SODA 2019) shows that in the standard, non-robust, streaming setting, (Δ+1)-colorings can be obtained while using only Õ(n) space. Here, we prove that an adversarially robust algorithm running under a similar space bound must spend almost Ω(Δ²) colors and that robust O(Δ)-coloring requires a linear amount of space, namely Ω(nΔ). We in fact obtain a more general lower bound, trading off the space usage against the number of colors used. From a complexity-theoretic standpoint, these lower bounds provide (i) the first significant separation between adversarially robust algorithms and ordinary randomized algorithms for a natural problem on insertion-only streams and (ii) the first significant separation between randomized and deterministic coloring algorithms for graph streams, since deterministic streaming algorithms are automatically robust. We complement our lower bounds with a suite of positive results, giving adversarially robust coloring algorithms using sublinear space. In particular, we can maintain an O(Δ²)-coloring using Õ(n √Δ) space and an O(Δ³)-coloring using Õ(n) space.

Cite as

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially Robust Coloring for Graph Streams. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 37:1-37:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chakrabarti_et_al:LIPIcs.ITCS.2022.37,
  author =	{Chakrabarti, Amit and Ghosh, Prantar and Stoeckl, Manuel},
  title =	{{Adversarially Robust Coloring for Graph Streams}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{37:1--37:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.37},
  URN =		{urn:nbn:de:0030-drops-156332},
  doi =		{10.4230/LIPIcs.ITCS.2022.37},
  annote =	{Keywords: Data streaming, graph algorithms, graph coloring, lower bounds, online algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail